MULTIPERIODICITY OF RR LYRAE STARS. T SEXTANTIS.

V.P. Bezdenezhnyi Astronomical Observatory, Odessa State University, T.G.Shevchenko Park, Odessa 270014 Ukraine

ABSTRACT. The Fourier analyses perfor-taking account of asymmetry of the light curve

med for 401 photoelectric V-magnitudes of the main frequency f_{1H} and its four harmo-

the RR_c Lyrae variable T Sex (Barnes III et nics were considered: $f_{1H}=3.0797$ (A=0.219),

with most significant frequency f_{1H} , frequencies multiple to that of f_{1H} as well as to frequencies f_q and f_s introduced by us. **Key words:** Stars: RR Lyrae type, Fourier

analysis, mode identifications

the main ones.

Earlier the author (Bezdenzhnyi, 1994) performed the analysis of periods of RR_c Lyr type star AE Bootis and showed, that it is a multiperiodic star. Fourteen frequencies have been found, the most important of which are: f_{1H} , $f_0, f_{2H}, f_g = 3/2 f_0 \text{ and } f_e = 5/4 f_0. \text{ Other frequence}$ encies are expressed as linear combinations of

In the present work a star of RR_c type T

Sex is also investigated by the frequency analysis of 401 V-measurements (Barnes III et al.,1988) for five nights at 13 days' interval. The star was investigated photometrically by many authors. We have used elements present for different intervals JD and constructed a period variation graph: a wave is seen with the cycle Π =24000 days (about 66 years) and with an amplitude of period variation $\Delta P = 0.00006$ days. Probably, it is due to the orbital motion

because of star's binarity. At the analysis a pe-

riod 0.324698 days from the fourth edition of

the General Catalogue of Variable Stars (1987)

is accepted as a period of the first overtone P_{1H}

characteristic of the RR_c stars.

At the account of one frequency the biggest peak is at the frequency f=3.079955 (P=0.32468) with the amplitude =0.180. For

al.) show that the star may be multiperiodic $2f_{1H}=6.1509$ (A=0.023), (A=0.012) $(A=0.018), 4f_{1H}=12.3128$ and $5f_{1H}=15.3931$ (A=0.006). Then four more frequencies were found: two multiple ones to f_a frequency introduced earlier $8f_g=9f_{1H}=12f_0=27.6775$ (A=0.004) and $13f_q = 45.042$ (A=0.003), as well as multiple to new frequency introduced in this work $f_s=1.5f_e$. The latter is related to the frequency f_e introduced earlier, like f_q is related to the fundamental frequency f_0 . The frequency f_s is also present in Cepheids and is as characteristic of them as the frequency f_{1H} - of

 RR_c stars (see in the same volume). Thus, two

frequencies multiple to the frequency f_s are fo-

und: $3f_s=12.9882$ (A=0.005) and $15f_s=65.222$

(A=0.003). T Sex, as well as AE Boo, is a mul-

References

tiperiodic variable star.

Nauka, Moscow.

Barnes III Thomas G., Moffet Thomas J., Hawley Suzanne L., Slovak Mark H., Fruek Marian L.: 1988, Ap.J.Suppl., **67**, 403.

Bezdenezhnyi V.P.: 1994, Odessa Astron. Publ., 7, 55.

Kholopov P.N., Samus' N.N., Frolov M.S., Goranskij V.P., Gorynya N.A., Karitskaya E.A., Kazarovets E.V., Kireeva N.N., Kukarkina N.P., Kurochkin N.E., Medvedeva G.I., Pastukhova E.N., Perova N.B., Rastorguev A.S., Shugarov S.Yu. (1987) General Catalogue of Variable Stars, V 3,