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ABSTRACT. We consider stationary outflowing
stellar envelopes accelerated by a radiation flux pres-
sure. A method is developed describing a spherically
symmetric flow in radiational hydrodynamics in re-
gions with arbitrary optical depth (τ ). The solution
of the derived system of differential equations is ob-
tained numerically. It proceeds through the singular
point, where a velocity is eqial to the isothermal sound
speed, and satisfies zero temperature and pressure bo-
undary conditions at the infinity. Method is discussed
of self- consistent evolutionary calculations for massive
stars on the stage of yellow and red supergiants, with
a mass loss determined unambiguously.
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1. Introduction

Evolution of massive stars (M >∼ 20M�) is accom-
panied by a mass loss, initiated by a high luminosity
and high radiation pressure. In blue supergiants, situ-
ated near the main sequence, mass loss rate is mode-
rate M ∼ 10−6M�/yr, and is connected with the out-
flow of layers having small optical depth. This mass
loss rate is determined by radiation pressure in lines,
where spectral absorption coefficient may be very high.
Evolved massive stars may lose mass with much hig-
her rate than the blue supergiants. Formation of sin-
gle Wolf-Rayet stars probably took place as a result of
such intense mass loss. The main goal of the theory
of mass loss from stars is to determine the mass loss
rate as an eigenfunction of the problem, together with
its luminosity and radius. The evolutionary scenario
of the WR star formation as a result of the intensive
mass loss on the stage after finishing of a hydrogen
burning in the core, was first suggested in the paper of
Bisnovatyi-Kogan and Nadyozhin (1972) on the base
of a crude calculations of self-consistent evolutionary
models of mass-losing massive stars. The main short-
coming of this paper was connected with ignoring of the

transition to a small optical depth in the outer regions
of the flow, and with using everywhere of the equati-
ons with the equilibrium radiation pressure and energy
density. In subsequent papers of Zytkow (1972,1973),
Kato (1985), Kato and Iben (1992) different types of
simplifications were used, which do not take into acco-
unt the difference of the outflowing envelopes from the
static ones.

The goal of the present paper is to derive equations,
which are approximately valid at all optical depths, gi-
ving exact limiting equations for the case of very large
and very small τ . Solution of these equations is ob-
tained at correct boundary conditions at large r (infi-
nity), where gas density ρ and gas temperature T tend
to zero. Such procedure after fitting the solution to the
stellar core will give self-consistent values of Ṁ , as well
as the parameters in the critical point and τph.

We derive relations for pressure, energy density, and
energy flux of radiation, which describe smoothly the
transition of the flow between optically thick and opti-
cally thin regions. In the limiting cases they reduce to
corresponding solutions of the radiative transfer equ-
ations in Eddington approximation. These relations
are used in the equations of the radiative hydrodyna-
mics with a constant total energy flow. Singular po-
ints of the equations are analyzed, and expansion in
the isothermal sonic point is obtained, necessary for
obtaining a numerical solution. Then the numerical
solution which satisfies the boundary conditions at in-
finity is obtained. The parameters characterizing the
properties of the underlying star have been prescribed.

2. Basic equations

A system of equations of radiation hydrodyna-
mics describing continuous transition between optically
thick and optically thin regions for the stationary out-
flow is written as:
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where L - is a constant total energy flux consisting of
the radiative energy flux together with the energy flux
of the matter flow, u is a rate of the outflow, κ is an
opacity, assumed to be constant, a is the constant of
a radiative energy density, R is a gas constant. Er

- part of energy density, that is due to radiation.Pr -
pressure due to radiation. We consider here the flow
in the gravitational field of a constant mass M , neglec-
ting self-gravity of the outflowing envelope . This sy-
stem of equations provides a description of a stationary
outflowing envelope accelerated by a radiative force at
arbitrary optical depth, where continuum opacity pre-
vails. In the optically thick limit τ → ∞, when terms
with L∞

th are negligible, and Erρ = 3Pr, a solution of
this system was obtained by Bisnovatyi-Kogan (1967).
In the case of a small τ for the anisotropic radiation
flux we find: Erρ ' Pr, what follows from the solution
of the transfer equation in Eddington approximation
(Sobolev, 1967).

When optical depth is becoming small, separation of
radiation and matter should be taken into considera-
tion. It means that only a part of radiation is deter-
mined by the outflowing gas. For this part of quanta
we assume LTE to be valid, what means that the mean
energy of such quanta is characterized by the tempera-
ture of the outflowing gas For the rest part of radiation,
another ”temperature”- mean energy of quanta should
be introduced. This part of radiation transfers mo-
mentum to the outflowing matter (pushes it) and thus
produces only the anisotropic part of the pressure, de-
termined by the term Lth. The separation of radiation
into two different parts occurs near the photosphere
and the mean energy of the free propagating quanta
are characterized by the effective temperature of the

photosphere.
The solution passing continuously this critical point,

which is of a saddle type (Parker, 1963). This point
corresponds to the ”isothermal sonic” point where

u2 = u2

s ≡
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)

T
.

The second singular point of the system of equations
is situated at infinity r → ∞, where

T = 0, ρ ∼
1

r2
→ 0, u → const = u∞. (9)

This condition is related to the fact that far from the
star the density in the stellar wind is very small.

Let us introduce nondimensional variables
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T (r)
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r
. (10)

After transformations we obtain a dimensionless sy-
stem of equations
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Where L∞
≡ L̃∞

th. To simplify writing here and further
we omit tilde. Dimensionless coefficients Ai are the
same as in (Bisnovatyi-Kogan and Dorodnitsyn, 1999)

Additional fifth parameter A5 is not independent,

A5 =

(

3

4

)1/5
A

1/5

3
R

4/5

A
3/5

1
A

4/5

2
κ1/5a1/5c4/5(GM )1/5

. (14)

It is of the order of the reciprocal optical depth in the
critical point. Condition of a continuous transition of
the solution through the critical point reduces the num-
ber of independent dimensionless parameters.

In addition to coefficients Ai, we have independent
nondimensional papameters L∞, and the optical depth
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in the critical point τcr, so before satisfying the boun-
dary conditions at infinity, we have 5 ”independent”
nondimensional parameters of the problem.

Sample numerical solution

In order to satisfy boundary conditions far from the
star we need to integrate (11)-(13) from the critical po-
int outward to the infinity. We exit the critical point
by means of expansion formulae. Expanding the solu-
tion in the vicinity of the critical point x = T = ρ = 1
in powers of (1 − x) we have

T = 1 + a(1 − x), ρ = 1 + b(1 − x), (15)

e−τ
' e−τcr (1 +

y

A5

), (16)

where y = 1 − x. a and b coefficients are given in
(Bisnovatyi-Kogan and Dorodnitsyn, 1999)

A numerical integration is started from the critical
point making the first step by means of the expansion
formulas. Integrating outward to the infinity we sa-
tisfy the boundary conditions. To satisfy condition
of zero T at infinity we find a unique dependence
A3(A1, A2, L

∞

th, τcr). After that the value of τcr is fo-
und uniquely for the given values of A1, A2 and L∞

th

by matching the condition v∞ =const. When r → ∞

velocity tends to a constant and thus ρ ∼ 1/r2. Only a
unique value of τcr allows to obtain the proper behavior
of u (and ρ) at the infinity.

The obtained solution corresponds to the following
dimensionless parameters: A1 = 50, A2 = 10−4, A3 =
43.88, τcr = 125, L∞

th = 0.6. This set of parameters
corresponds to the following values in the critical point:
Tcr = 1.4 · 104K, rcr = 2.6 · 1013cm, ρcr = 6.6 · 10−12

g/cm3. We accepted here M = 2 · 1034 g. The velocity
of the flow in the critical point is vcr ≈ 11 km/s, and
the mass loss rate Ṁ ≈ 9 · 10−3M�/yr.

A behavior of the solution with a Mach number ra-
pidly decreasing inside at r < rcr, gives a possibility to
match it to a static solution in the core. In reality the
opacity peak is situated near the critical point, the opa-
city inside is decreasing and the velocity drops inside
more rapidly, then in the case of κ=const (Bisnovatyi-
Kogan and Nadyozhin, 1972). Deep inside the star, all
hydrodynamical solutions converge to a static one. In

the static atmosphere, at L =const, and M =const, we
have ρ ∼ T 3 and T ∼ 1/r (Bisnovatyi-Kogan, 1973).
Since u ∼ 1/(ρr2), the velocity in the subsonic region
tends to zero ∼ r. In reality, deeper in the star Ṁ dec-
reses, tending to zero. That means, that the velocity
goes to zero faster, than ∼ r. The Mach number Ma,
is defined by the relation Ma = u/

√

γP/ρ, where P is
taken without the anisotropic term.

The effective temperature of the photosphere is ob-
tained from the relation: L∞

th/4πr2 = σT 4. For the
given set of parameters we get xph = 0.03, τph = 4,
Teff. = 0.06, and τ̃ph = 3.75. That corresponds to
rph = 8.6 · 1014 cm, T = 840 K, what corresponds to
a very luminous infrared star with an extended outflo-
wing atmosphere. It is possible that on the stage of a
very intensive mass loss the massive star is transformed
into an infrared object. We should have in mind, that
for realistic functions κ(ρ, T ), P (ρ, T ), the observed qu-
antities should be different. Below the temperature
of several thousands Kelvin the opacity drops (Igle-
sias and Rogers, 1996; Seaton, 1996), the photosphere
approaches the star, and the effective temperature is
greater.

The condition of matching of the solution of the out-
flowing envelope to the static core determine uniquely
the values of rcr and L, leading to the unique solution
of the mass-losing star with a self-consistent mass loss
rate.
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Żytkow A., 1972.: Acta Astron., 22, 103.
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