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ABSTRACT. Different regimes of accretion to a star
with a dipole magnetic field were investigated using
2D numerical axisymmetric resistive MHD simulations.
Numerical technique was improved over our recently
published results (Toropin et al., 1999, refered as T99
below).

A new model for the gravitating star with a dipole
magnetic field was adopted for presented simulation
set. Spherical accretion to a non–rotating star with a
dipole field was modeled. Existence of the stationary
accretion flow with polar columns inside the Alfvén sur-
face was confirmed. The accretion rate to the dipole in
the axially symmetric flow is always smaller than in the
Bondi accretion to corresponding non–magnetized star.
Relations, obtained in previous paper (T99), between
the accretion rate to the non–rotating dipole Ṁdip and
the magnetic momentum µ, the density of surround-
ing medium ρ∞, the magnetic diffusivity ηm are qual-
itatively confirmed in simulations with new model of

dipole. Specifically, Ṁdip ∝
(

%∞
/

µ2
)0.5 ·η0.38

m and the

Alfvén radius is RA ∝
(

%∞
/

µ2
)

−0.3 · η0.07
m .

Investigations of the cylindrical accretion (parrallel
to the star’s magnetic momentum) were started. If the
value of the star’s gravitational capture radius is close
to its Alfvén radius then the magnetic field surves as
an effective obstacle for the incoming flow deflecting it
from the star. Simulated flow structure is discussed.
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1. Introduction

A general analytic solution for spherical accretion to
a non–magnetized star was obtained by Bondi (1952).
His results were confirmed recently with the help of
numerical three–dimensional (3D) hydrodynamic sim-
ulations by Ruffert (1994). Accretion of matter with
low angular momentum to non–magnetized center was
investigated by Bisnovatyi–Kogan & Pogorelov (1997).

Less attention has been given to quasi–spherical ac-

cretion to a magnetized star. Although in many cases
accretion occurs through a disk, in other cases, where
accreting matter has small angular momentum the ac-
cretion flow is quasi–spherical. Examples include some
types of wind fed pulsars (see review by Nagase 1989).
Also, quasi–spherical accretion may occur to an iso-
lated star (especially, to an Old Isolated Neutron Star,
OINS) if its velocity through the interstellar medium
is small compared with the sound speed.

Due too intristic multidimensional nature of accre-
tion flow to the dipole and nonlinearity of MHD equa-
tions only numerical calculations could unveil darkness
from the real flow structure. Questions of interest are:

• the position & the shape of the Alfvén surface;

• the departures of the flow from spherical inflow to
highly anisotropic polar column accretion inside
the dipole’s magnetosphere;

• dependence of the accretion rate to the dipole on
the star’s magnetic momentum and rotation rate,
the sorrounding matter’s density and the magnetic
diffusivity (considered by Lovelace et al. 1995 for
the case of disk accretion).

In our recent work (T99) a spherical accretion to a
rotating star with an aligned dipole magnetic field was
investigated by 2D MHD numerical simulations. In
this paper development of that investigations with an
improved dipole model is presented.

2. Model

Axisymmetric MHD simulations of spherical and
cylindrical accretion to a (rotating) star with an
aligned dipole magnetic field were performed under fol-
lowing approach. We consider the equation system for
resistive MHD,

∂ρ

∂t
+ ∇· (ρ v) = 0 , (1)

ρ

(

∂v

∂t
+ (v·∇) ·v

)

= −∇p +
(J× H)

c
+ Fg , (2)
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∂H

∂t
= ∇× (v×H) +

c2

4πσ
∇2H , (3)

∂(ρε)

∂t
+ ∇ · (ρεv) = −p (∇·v) +

J2

σ
. (4)

All variables had their usual meanings. The equation
of state was considered to be that for an ideal gas, p =
(γ − 1) ρε, with γ = 7/5 the usual specific heat ratio.
The equations incorporated Ohm’s law J = σ(E + v×
H/c), where σ was the electrical conductivity. The
corresponding magnetic diffusivity ηm ≡ c2/(4πσ) was
constant in whole calculation region.

We used an inertial cylindrical coordinate system
(r, φ, z), its origin coincided with the star’s and dipole’s
centers, the z–axis was parallel to the star’s rotation
axis and dipole magnetic momentum µ. Axisymmetry
was assumed, ∂/∂φ = 0, and the z–axis was threated
as a symmetry axis.

In order to guarantee that ∇ · H = 0 holds for all
time in the numerical simulations, we used the vector
potential A for the magnetic field, H = ∇×A, instead
of magnetic field H itself. The magnetic field of the
central gravitating object was chosen as an exact dipole
one, A = µ × R/R3. The corresponding magnetic field
was H = [3R (µ ·R) − R2µ]/R5, which was a “pure”

dipole field.

This was the main methodological advantage over
the dipole’s model in (T99) where the magnetic po-
tential was builded up as a potential of a “current”
disk with a small but finite size placed in the equato-
rial plane. With the “point” dipole, used in describing
simulations, we usually observed more narrow polar
columns in comparison with previously published re-
sults with dipole, created by the distributed electric
current system (T99). This could be explained by bet-
ter convergence of the field lines to the axis in the star’s
vicinity in the case of the point dipole.

In eq. (2) the gravity force Fg(R) = −GMρR/R3,
is due to the central star, where R is the radius vec-
tor, and M is the star’s mass. The gravity force and
the magnetic potential without softering were used be-
cause a totally absorbing object, an “accretor” was
placed close around the origin. Its surface could be
treated as a star’s surface that absorbs all accreted
matter. The size of the accretor was chosen to be small,
raccr << Rmax. We were experimenting with “accre-
tors” of two sorts (see Fig. 1 and compare to Fig. 1 from
T99). The first one is a coarse approximation of the
sphere on rectangular grid, the second one is the sim-
plest case with square shape accretor. Test simulations
showed very small differences in flow around these two
accretors, in fothcoming text only simulations with the
square accretor will be described.

The magnetic potential was fixed on the surface of
the accretor during whole simulation. This followed
from the electromagnetic conditions on the surface of
the perfectly conductingh star and protected the star’s
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Figure 1: A scheme of the “accretor” for two cases, a
coarse approximation to the circle and a square shaped
“accretor” together with the dipole magnetic field lines
are presented. Only 25 × 25 cells around the origin of
the whole 257 × 257 calculation grid are shown.

magnetic field against destruction (T99). Full descrip-
tions of set method for the boundary conditions on the
star’s surface could be found in T99.

Two dimensionless plasma parameters define the so-
lution of the equations (1)–(4) after reduction to the
dimensionless form. The first parameter is

β ≡ 8πP∞

H2

0

∝ ṀB/µ2 . (5)

The important quantity ṀB/µ2 is referred to
as the “gravimagnetic” parameter by Davies &
Pringle (1981). The second parameter is

η̃m ≡ ηm

RAVA

=
1

Rem

. (6)

– dimensionless magnetic diffusivity. The third pa-
rameter connected to gravity is “hidden” by choosing
Bondi radius RB = GM?/ c2

∞
as a scale unit.

3. Results

3.1. Spherical accretion onto a magnetic dipole

Symmetry about the z = 0 plane was assumed for
spherical accretion onto a dipole and so it was possible
to perform they in one quater of the (r, z) plane. Typ-
ically an equidistant orthogonal grid with 257 × 257
resolution was used.

Following boundary conditions were adopted. The
region of the equatorial plane (0 < r ≤ Rmax, z = 0)
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Figure 2: Simulation of the spherical accretion onto
a non–rotating dipole. Position of the shock wave is
marked by the dashed line and the Alfvén surface is
marked by solid line, its equatorial radius is Req

A ≈
4.1R? ≈ 1

35
RB. Calculation grid is 257 × 257, vectors

are drawn at every 32nd knot at every directions.

was treated as a symmetry plane. The z–axis was
treated as a symmetry axis. For outer boundaries
we assume spherically symmetrical inflow with phys-
ical values given by the classical Bondi (1952) solution
with maximum possible accretion rate

ṀB = 4πλ

(

GM

c2
∞

)2

ρ∞c∞ , (7)

defined by the density ρ∞ and the sound speed c∞
at infinity and by the mass of the central object
M . Bondi solution gave physical parameters for
the inflow boundaries (r = Rmax, 0 ≤ z ≤ Zmax) and
(0 ≤ r ≤ Rmax, z = Zmax). Computational region lies
inside the sonic surface Rmax = Zmax = 20R? =
RS/

√
2, where the sonic radius is RS = (5− 3γ)/4RB,

and RB = GM/c2
∞

is the Bondi radius. The accretion
is supersonic, all gas dynamical variables could be fixed
at the outer boundaries.

Simulations for different values of β ∝ ṀB/µ2 and
magnetic diffusivity ηm were performed. We can make
following conclusions based on simulations.

Spherical accretion to a magnetic dipole is very dif-
ferent from that to a non–magnetized star. Instead
of supersonic steady inflow, which is observed in stan-
dard Bondi accretion, a shock wave forms around the
dipole just after begin of simulation. The supersonic
inflow outside the shock becomes subsonic inside it.
In all cases we observe that the shock wave gradually
expands outwards. Figure 2 shows the main features
of the flow at time when the shock has moved to the
distance Rsh = 14R?.
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Figure 3: Vicinity of the magnetized accreting object.
The Alfvén surface is marked with the solid line and
inside it matter flows along the magnetic field lines.
Polar columns accretion could be seen on this picture.
Vectors are drawn at every 8th point along both direc-
tions, β = 10−5, ηm = 10−4.

We observe that for R > Rsh the flow is unperturbed
Bondi flow, used as initial and boundary conditions,
whereas inside the shock for R < Rsh it is subsonic.
Initially, the subsonic accretion to dipole is spherically
symmetric, but closer to the dipole it becomes strongly
anisotropic. Near the dipole matter moves along the
magnetic field lines and accretes to the poles in two po-
lar columns. Figure 3 shows the inner subsonic region
of the flow in greater detail. The dashed line shows
the Alfvén surface, which we determine as the region
where the matter energy–density W = ρ(ε + v2/2) is
equal to the magnetic energy–density Em = H2/(8π).

New method of central star setup (see section 2) al-
lowed to define the shape and sizes of the Alfvén

surface more. It is ellipsoidal, but in contrast with
our previous simulations (see T99), it’s more elongated
along the poles. For simulations, presented on figures 2
and 3, the equatorial radius of the Alfvén surface is
Requ

A ≈ 4.1R?, while its polar size along the symme-
try axis z iz Rz

A ≈ 4.8R?. This could be explained by
the fact that electromagnetic energy density near the
axis is higher in the field of the “point” dipole, used
in this simulations set, in comparison to the energy of
the field, created by the distributed current system,
used in T99. But this correction is not too high, the
Alfvén surface polar radius differs only by ≈ 30 % in
two simulations, while the equatorial radius is around
the same.

A significant deviation from spherically symmetric
flow is observed for R ≤ 2RA, because magnetic field
starts to influence the flow before it reaches the Alfvén
surface. The initial vacuum dipole magnetic field is
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Figure 4: Cylindrical supersonic accretion to the non–
rotating dipole (weak gravity case, RA ≈ 0.25RB).
Density distribution in greyscale, magnetic field lines
and velocity vectors at every 16th knots are shown.
Mach’s number is 3.

compressed inside by the accreting matter. A new sta-
tionary subsonic solution is formed around the dipole
(the complete description of its pattern could be found
in T99). The stationary accretion rate to the dipole
Ṁdip could be measured from the simulation results.

As was pointed out first in T99, the accretion rate
to the dipole is always smaller than to corresponding
non–magnetized star, even if the dipole is not fast ro-
tating. For the system, discussed here and shown on
illustration, the accretion rate is Ṁdip ≈ 0.17ṀB when
Requ

A ≈ 4.1R?. The accretion rate to the dipole was
found to be depended on the magnetic momentum of
the star, the surrounding density and the magnetic dif-
fusivity as

Ṁdip ∝
(

%∞
/

µ2
)0.5 · η0.38

m . (8)

The equatorial Alfvén radius varries as

Requ
A ∝

(

%∞
/

µ2
)

−0.3 · η0.07

m . (9)

Combining equations (??) and (??) with the fact that
when the Alfvén radius equals to ∼ 4R? the dipole
accretion rate Ṁdip is equal to ∼ 0.17ṀB, we can im-
mediatly estimate the accretion rate for systems with
stronger magnetic field. For example, if the Alfvén ra-
dius will be RA ≈ 100 ·R? for isolated neutron star ac-
creting quasi–spherically from surrounding medium the
accretion rate (and accretion luminosity, in advance)
will be less than 1% of the Bondi’s accretion rate. So,
corrections needed when studing possibility of finding
old isolated neutfon stars (OINS) (see, for ex., Treves
& Colpi, 1991, Blaes & Madau, 1993) and they will
lead to decreasing of the number of principally observ-
able OINS by 2 . . .3 order of magnitude.

3.2. Cylindrical accretion to the dipole

Simulations of the cylindrical accretion in 2D axially
symmetric formulation are limited only by the flows
where velocity of the matter according to the star (or
vice verse) is parrallel (or antiparrallel) to the magnetic
momentum of the aligned dipole.

Simulations were performed in a rectangular box
(Zmin ≤ z ≤ Zmax, 0 ≤ r ≤ Rmax) of the (r–
z) plane, covered with a 129 × 385 equidistant grid
with equal steps along r and z axes. The gravitat-
ing accretor with dipole magnetic field frozen ib its
surface was anchored at the origin of cylindrical coor-
dinate system. Next set of boundary conditions was
used. Supersonic inflow with Mach number M = 3
with temporary constant accretion rate was set up
on the upstream (left on the fig. 4) boundary (z =
Zmax, 0 ≤ r ≤ Rmax). On the outer cylindrical bound-
ary (Zmin ≤ z ≤ Zmax, r = Rmax and on the down-
stream boundary (z = Zmin, 0 ≤ r ≤ Rmax) so called
“free boundary conditions” (i.e., ∂/∂n = 0) were im-
plied.

First, the case of relatively strong magnetic field and
weak gravity was investigated (see results at fig. 4).
This simulation is characterezed by foolowing relations:
R? = Raccr ≈ 0.1 · RB , RA ≈ 0.25 · RB, where
RB = GM/c2

∞
is the Bondi radius. In corresponding

hydrodynamical simulation of cylindrical accretion to
non–magnetized star (see Ruffert 1994, 1995) the head
conical bow shock is attached to the accretor surface.
In the dipole case the strong magnetic field serves as
an obstacle, a shield for accreting matter, deflecting it
from the star and preventing accretion.

What will be the accretion flow pattern if the Alfvén
radius will be much smaller in comparison to the Bondi
radius? For typical space condition it is estimated to
be RA ∼ 0.01 · RB or even less. One can proposes
that there will be a conical bow shock in accretion flow
far from the dipole but in the immediate vicinity of
the Alfvén surface and inside it the flow will be quasi–
spherical.

For investigating of such interesting system we plan
to incorporate so called “nested grids” method to our
code. It allows to increase resolution around the dipole
but at the same time allows to use coarse grids far
from it. This will allow us to model system which
will be cloaser to reality, with RA ∼ 102 . . .103R? and
RA ∼ 0.01 · RB at the same time.
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