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ABSTRACT. We study the weak-field limit of the
static spherically symmetric solution of the locally con-
formally invariant theory, which is regarded as an alter-
native to Einstein’s general relativity theory in expla-
ining the flat galactic rotation curves. In contrast with
the previous works, we consider the physically relevant
case where the scalar field that breaks conformal sym-
metry and generates fermion masses is nonzero. In the
physical gauge, in which this scalar field is constant in
space-time, the solution reproduces the weak-field limit
of the Schwarzschild–(anti) de Sitter solution modified
by an additional term that, depending on the sign of
the Weyl term in the action, is either oscillatory or ex-
ponential as a function of the radial distance. Such be-
haviour reflects the presence of, correspondingly, either
a tachyon or a massive ghost in the spectrum, which is
a drawback of the theory under discussion.
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One of the long-standing problems of modern cosmo-
logy is the so-called problem of dark matter [see, e.g.,
Peebles (1993)]. In general, this problem consists in
the discrepancy between the amount of the observed
luminous matter on various spatial scales and the as-
sumption that this matter is the only essential source of
gravitation. Thus, on very large scales, the amount of
the present luminous matter is insufficient to account
for the measured rate of expansion of the universe. On
the galactic scales, the problem reveals itself, in parti-
cular, in a peculiar behaviour of the galactic rotation
curves in spiral galaxies, which do not appropriately
fall with the distance from the galactic centre. In a
broad sense, the problem can be stated as the viola-
tion of the laws of the general relativity theory and
can be expressed in the form of the inequality

Gµν 6= 8πT ∗

µν , (1)

where T ∗

µν is the stress-energy tensor of the observed
luminous matter and Gµν is the Einstein tensor cor-
responding to the spacetime metric inferred from ob-

servations (we use the geometrized units, in which
Newton’s gravitational constant and the speed of light
are equal to unity).

The common general solution of the above problem
lies in the assumption that most of matter on the re-
levant spatial scales is invisible, so that an extra term
should actually be present on the right-hand side of the
above relation, thus restoring the equality. There exist
several candidates for such dark matter, ranging from
massive relic elementary particles (of known or predic-
ted species) to compact objects of planetary type. The
search for this dark-matter component is currently be-
ing continued.

In parallel to the above-mentioned common appro-
ach, some people consider another interesting possibi-
lity, namely, that it is not the right-hand side of Eq. (1)
that is to be modified by the contribution from still un-
detected matter, but rather that it is its left-hand side
that is to be somehow modified. In other words, it is
assumed that the laws of the general relativity theory
fail to be universally valid and must be replaced by
some other laws. On this path, one certainly needs
some guiding principles to decide how such a modifica-
tion might be made.

Recently, Mannheim and Kazanas (1989) [see also
Mannheim (1993, 1997, 1998), and references therein]
explored the possibility that gravity is described by the
conformally invariant theory with the key ingredient in
the action being the Weyl term

IW = − α

∫

d4x
√−g CλµνκC

λµνκ

= − 2α

∫

d4x
√−g

(

RµνR
µν − R2/3

)

+ boundary terms , (2)

where Cλ
µνκ is the conformal Weyl tensor and α is the

purely dimensionless gravitational coupling constant.
In particular, they obtained the complete conformally
static spherically symmetric solution of the theory des-
cribed by Eq. (2) with the line element given by

ds2 = C2(x)
[

−G(r)dt2 + dr2/G(r) + r2dΩ
]

, (3)
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where C(x) is an arbitrary nonzero function of the spa-
cetime coordinates x, and G(r) is given by

G(r) = 1 − β(2 − 3βγ)/r − 3βγ + γr − κr2. (4)

Here, β, γ, and κ are integration constants. Having
tacitly assumed that test bodies move along the geode-
sics of the metric with the line element of Eq. (3) and
with C(x) ≡ 1, Mannheim and Kazanas (1989) then
claimed to recover the Newtonian term (∝ 1/r) in the
potential of solution (4) of the conformal gravity theory
and also suggested that the additional linear term γr
in Eq. (4) might account for the flat galactic rotation
curves without having to invoke dark matter.

It should be noted, however, that solution (3), (4) of
the purely gravitational conformal theory defined by
Eq. (2) is not quite relevant to the observations, since
it is obtained without regard for the matter part of
the theory that includes the mass-generation mecha-
nism for the elementary particles and thereby for test
bodies such as stars and planets. Such a feature of
this solution is reflected in the unrestricted freedom of
choosing the conformal factor C(x) in Eq. (3) which
clearly affects the timelike geodesics of the metric, but
which is totally undetermined thus far. Moreover, the
electrovac generalization of solution (3), (4) was pre-
viously obtained by Riegert (1984), who also asserted
that one of the integration constants can be elimina-
ted by further coordinate and conformal transformati-
ons. This property of the solution, with γ being such
a constant, was noted and explicitly demonstrated by
Schmidt (1984, 1999). All this makes very problematic
the use of the metric given by the second expression in
Eq. (3) and by Eq. (4) as an observable one.

Here, we consider this problem taking the matter
to be represented by the generic conformally invariant
action

IM = −
∫

d4x
√−g

[

∂µS∂µS/2 + λS4

− S2R/12 + iψ̄γµ(x)∇µψ − ζSψ̄ψ
]

, (5)

where ψ is the fermion field, S is the scalar field, R is
the curvature scalar of the metric, and λ and ζ are di-
mensionless coupling constants. In the theory defined
by Eqs. (2), (5), once the scalar field S is everywhere
nonzero it can be gauged to an identical constant S0 by
a conformal transformation. In this gauge, the fermion
part of the action acquires the standard form with con-
stant mass, hence all physical effects receive the stan-
dard description; in particular, massive particles and
test bodies move along the timelike geodesics of the
metric as in the general relativity theory. It is clear
that since conformal symmetry is broken and there are
massive particles in the real world, one should take so-
lutions with S being nonzero. The physical vacuum is
then regarded as the state without excitations of the
rest of the matter fields, in our case, the field ψ.

We consider solutions outside a compact source for-
med by the matter fields (represented in our model by
the single field ψ). The equations of the theory have
the form

4αWµν = Tµν , (6)

where the two sides stem, respectively, from the varia-
tion of actions (2) and (5) with respect to the metric,
and the expression of the stress-energy tensor Tµν in
the gauge S ≡ S0 and with the ψ field being zero is
given by

Tµν = −S2

0 (Rµν − gµνR/2) /6− λS4

0gµν . (7)

Equations (6) with the right-hand side given by Eq. (7)
are nothing but the Bach–Einstein equations with the
cosmological constant term—the last term in Eq. (7).
Note that the left-hand side of Eq. (6) is identically
traceless, and it is convenient to rewrite system (6) as

4αWµν = Tµν, R = 24λS2

0 , (8)

where Tµν ≡ −S2
0 (Rµν − gµνR/4)/6 is the traceless

part of the stress-energy tensor Tµν , and the second
equation of system (8) is the trace of Eq. (6).

We restrict ourselves to the static spherically sym-
metric case. As we explained above, we are interested
in the situation where Tµν is given by Eq. (7) with
constant nonzero S0. In this gauge, a static spherically
symmetric metric can be put in the form

ds2 = −B(r)dt2 +A(r)dr2 + r2dΩ . (9)

It appears to be difficult to obtain the exact general
solution for A(r) and B(r). However, it is possible to
obtain solution in the weak-field limit. Let the physical
metric of Eq. (9) in the spatial region of interest be
sufficiently close to the flat one, so that

A(r) = 1 + εa(r), B(r) = 1 − εb(r), (10)

where ε is an auxiliary small parameter to be set equal
to unity in the end.

To obtain the system of equations for the functions
a(r) and b(r), we must linearize the equations of sy-
stem (8) for the metric of in the small parameter ε.
We note that the scalar curvature R of this metric is of
order ε. Hence, the second equation of system (8) im-
plies that the dimensionless value of λS2

0r
2 should also

be at least of order ε in the spatial region under consi-
deration. On observational grounds, this restriction on
the value of λS2

0r
2 is quite natural since this value re-

presents the effect of the cosmological constant, which
is believed to be small on the galactic and stellar spa-
tial scales. However, from the theoretical viewpoint,
such a restriction constitutes the fine-tuning problem
of the cosmological constant. The solution of this long-
standing problem is absent, so we formally replace λ
by ελ, thus taking into account the smallness of the
corresponding parameter.
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Omitting the calculations, which can be found in
Barabash and Shtanov (1999), we present here the re-
sulting solution. We make the notation

p =
S2

0

24α
, q = λS2

0 , (11)

and note that solution depends on the sign of the con-
stant p that coincides with the sign of α. First, we
consider the case where p > 0. We obtain

a(r) = 2m/r − 2qr2

+ n [sin (kr + φ)/r − k cos (kr + φ)] , (12)

b(r) = [2m+ 2n sin (kr + φ)]/r − 2qr2 , (13)

where k =
√
p, and n and φ are integration constants.

We see that in the Newtonian limit, apart from the
universal term qr2, there arises the additional gravita-
tional potential

V (r) = − m+ n sin (kr + φ)

r
, (14)

in which the constants m, n, and φ are to be related to
the source. The constants k =

√
p and q are universal

and are given by Eq. (11).
We note that the linearized static spherically symme-

tric solutions in a generic (not conformally invariant)
second-order gravitational theory without the cosmo-
logical constant were obtained by Stelle (1978). Their
structure is similar to that of Eqs. (12), (13) and to
solutions (25), (26) below. However, it is not possi-
ble to pass to the direct limit of conformal invariance
in the solutions of Stelle (1978), because the case of
conformal invariance is characterized by a nontrivial
degeneracy, in particular, the massive scalar degree of
freedom that is present in a generic case is missing here
[see also Schmidt (1985a, 1985b, 1986) in this respect].

Now suppose that a static compact source is compo-
sed of identical “atoms” (these may be real atoms or
elementary particles) and that each of these atoms pro-
duces static gravitational potential as given by Eq. (14)
with identical constants m, n, and φ. In view of the
weakness of the potential, we also assume the validity
of the superposition principle. Then, if µ(r) is the spa-
tial distribution of the “atoms” in the source, the total
potential is given by the expression

Φ(r) =

∫

V (|r− r′|)µ (r′) dr′. (15)

This potential is the sum of two terms: Φ(r) = Φm(r)+
Φn(r). They satisfy the equations

∆Φm(r) = 4πmµ(r), (16)

∆Φn(r) + pΦn(r) = 4πn sinφµ(r), (17)

that, in the theory under investigation, correspond to
the unique Poisson equation of the linearized general
relativity theory.

For a spherically symmetric compact distribution
µ(r), the potential given by Eq. (15) with the kernel
given by Eq. (14) is easily calculated:

Φ(r) = −
∫

∞

r

M (r′)

r′2
dr′ − N sin(kr + φ)

r

− 4πn sinφ

kr

∫

∞

r

µ(r′) sin [k (r − r′)] r′dr′, (18)

where

M (r) = 4πm

∫ r

0

µ(r′)r′
2
dr′, (19)

N =
4πn

k

∫

∞

0

µ(r′) sin (kr′) r′dr′. (20)

Thus, outside the source, the potential of the form (14)
is reproduced with the same phase φ, but with different
coefficients m and n. Moreover, while the coefficient m
is additive (it plays the role of the gravitational mass of
the source), the coefficient n is not: its new value N is
given by Eq. (20). However, the coefficient n becomes
approximately additive for a distribution whose spatial
size is significantly less than 1/k.

If the product kr < 1 in the region of interest (say,
on galactic scales), one can expand the oscillatory part
of Eq. (14) in powers of kr to obtain

V (r) = V0 −
M0

r
+

Γr

2
+Qr2 + O

[

(kr)
3
]

, (21)

where V0 = −nk cosφ , M0 = m + n sinφ , Γ =
nk2 sinφ , and Q = q + nk3 cosφ/6 . We thus reco-
ver the linear term in the potential of Eq. (21), similar
to that which occurs in Eq. (4) and which was used
by Mannheim and Kazanas (1989) to account for the
flat galactic rotation curves. However, there exists an
important observational bound that rules out the po-
ssibility for the linear term in expansion (21) to play a
significant role on galactic scales. Note that the coeffi-
cients −g00(r) and grr(r) of the metric of our solution
are not mutually inverse, which is reflected in the fact
that the functions a(r) and b(r), given, respectively,
by Eqs. (12) and (13), are not equal to each other.
At small enough distances, both functions reproduce
the Newtonian potentials with the masses, respecti-
vely, m0 = m + n sinφ and m1 = m + (n sinφ)/2,
the difference between them being ∆m = (n sinφ)/2.
At the same time, the Viking spacecraft observati-
ons in the vicinity of the Sun indicate that the ratio
∆m/m <∼ 2 × 10−3 [see Will (1993)]. This implies the
following observational bound for the Sun:

n sinφ

m
<∼ 4 × 10−3. (22)

Since we assume that the parameter k is sufficiently
small so that expansion (21) is legitimate on galactic
scales, the values of both m and n are additive on such
scales and estimate (22) is valid on galactic scales as
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well. Now, the linear term in Eq. (21) formally becomes
comparable in magnitude to the Newtonian one only at
the distance r ∼

√

M/Γ ≈
√

m/(nk2 sinφ). But, for

such distances, we would have kr ∼
√

m/(n sinφ) >∼ 10
because of estimate (22), which contradicts the original
assumption kr < 1. Thus, the linear term in expan-
sion (21) cannot play a significant role on galactic sca-
les, and one should rather try the exact potential in
the form (18) for a spherically symmetric source with
the bounding condition (22) to account for the galactic
rotation curves.

It is instructive to estimate the realistic value of the
constant α in Eq. (2) for which the value of kr is of or-
der unity on a typical galactic scale of 10 kpc, thus ma-
king the potential of the form (14) in principle relevant
to the galactic rotation curves. Whatever scalar fields
are present in the theory, they all contribute to the
value of p given by Eq. (11). Thus, at least the scalar
Higgs field of the standard model of strong and electro-
weak interactions should be taken into account. The
mean value of this field is known to be η ' 246 Gev;
this value will contribute to S0 in Eq. (11) and, in order
that k × (10 kpc) <∼ 1 be valid, we must have

α >∼ 1074 , (23)

which, of course, is a severe restriction. It is difficult
to conceive models in which this restriction is substan-
tially weakened without fine-tuning.

On the other hand, if we take α ∼ 1, then the expec-
tation value η ' 246 GeV of the standard model Higgs
field leads to the spatial scale

1/k ∼ 10−16 cm (24)

on which potential (14) oscillates. Its significance
might only be manifest on the spatial scales of elemen-
tary particles, where, of course, the whole theory must
be quantized.

In the case p < 0, which corresponds to α < 0, the
solution for a(r) and b(r) has the form

a(r) = 2m/r − 2qr2

+ n1 (1 + kr) e−kr/r + n2 (1 − kr) ekr/r,
(25)

b(r) = 2m/r − 2qr2 + 2n1e
−kr/r + 2n2e

kr/r, (26)

where now k =
√−p , and n1 and n2 are integration

constants. Similar solutions in a generic second-order
gravitational theory (not conformally invariant) wit-
hout the cosmological constant were obtained by Stelle
(1978). Solutions in the conformally invariant second-
order theory with the Einstein term but without the
cosmological-constant term were also obtained in Sch-
midt (1985a, 1985b, 1986). The physically meaningful
solution is selected by imposing boundary conditions
at infinity, which leads to the condition n2 = 0. For

sufficiently small values of k, the observational bound
similar to condition (22) implies

n1

m
<∼ 4 × 10−3, (27)

and makes the extra exponential potential in Eq. (26)
uninteresting.

Finally, we note that in the case p < 0, which
corresponds to α < 0, one also can obtain solutions
by formally replacing the trigonometric functions in
Eqs. (12), (13), and (14) by their hyperbolic counter-
parts and taking k =

√−p. Equations (16), (17) will
then remain valid in this case as well, with the replace-
ment of sinφ by sinhφ. The structure of the left-hand
sides of Eqs. (16), (17) reflects, besides the presence of
the massless graviton, also the well-known presence of
a spin-two tachyon (in the case of α > 0) or a spin-two
massive ghost (in the case of α < 0) on the background
with S 6= 0 of the theory described by Eqs. (2), (5) [see,
e.g., Stelle (1978)]. The presence of a tachyon in the
case α > 0 indicates instability of a large class of solu-
tions, including the flat space-time solution in the case
λ = 0; and the presence of a ghost in the case α < 0
implies possible absence of perturbative unitarity in
the corresponding quantum theory. This appears to
be the main drawback of the conformal theory under
discussion.
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