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ABSTRACT. The physical properties of an exact so-
lution of Einstein’s field equations are examined. This
spherically symmetric perfect fluid solution contains
expansion, acceleration and shear. There exist models
with regions of spacetime where the pressure and the
density are positive and the dominant energy condition
and the causality condition are also fulfilled. Moreo-
ver, the pressure and the density gradients are equal.
The mass function is zero at the origin where there is
Lorentz-Minkowski geometry and no trapped surface
exists.
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1. Introduction and line element

An exact solution of Einstein’s field equations which
appear in simple form in non-comoving coordinates
may show a bewildering appearance when transformed
to a comoving system. Hence, McVittie and Wiltshire
(1977) thought it worth while to examine the possi-
bility of solving Einstein’s equations in terms of non-
comoving coordinates. However, they obtained their
solutions by ancillary mathematical assumptions and
abstained from a detailed physical analysis of their mo-
dels. In this paper we examine a particular model given
by McVittie and Wiltshire (1977). We shall examine
the properties of the following line element

ds2 = P 4/3dη2 − P 2/3e−2εη/η0

(
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)
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× (dξ2 + sin2 ξdΩ2), (1)

where P = 1 + Ae−2z, ez = sin ξ
2
eεη/η0 , ε = ±1 and A

is a constant which may be positive or negative and η0

is one more constant. This metric is solution (8.11) in
McVittie and Wiltshire (1977). Writing
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(

sin
ξ

2

)

−4

sin2 ξ, (2)

metric (1) yields that the centre (R=0) is represented
by ξ = π. Using Einstein’s equations ”in reverse”, we

now find after some calculations that the pressure p
and the density ρ are respectively given by
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For the centre (ξ = π) we have
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8πρc =
3(5Pc − 2)2
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c
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where the suffix c denotes centre value. We now cho-
ose Pc = 1 + Ae−2εη/η0 such that the following two
conditions are fulfilled:

28− 20Pc − 35P 2

c > 0, (7)

3(5Pc − 2)2 > 28 − 20Pc − 35P 2

c . (8)

It is easily seen that this will be the case if and only if

Pc ∈ 〈−1.225 , −0.241〉 ∪ 〈 0.604 , 0.653 〉. (9)

Next, let e2εη/η0 ≈ 0 such that the first two terms
of equations (5) and (6) will dominate the expressions
for the pressure and the density. Hence, we have the
important conclusion there are classes of solutions for

which there exist regions of spacetime in which these

models are physically valid. Moreover, these models
are nonsingular close to the centre. From equations (3)
and (4) it is further seen that the weak energy condition
ρ + p ≥ 0 yields

H ≡
16

η2

0

e−2εη/η0 − P 2/3 sin2 ξ ≥ 0. (10)
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2. The four velocity and comoving coordinates

We choose the timelike component u4 to be positive,
and with our line element (1) we obtain

u4 =
4

η0

P−2/3e−εη/η0H−1/2. (11)

u1 = −ε sin ξ sin2
ξ

2
eεη/η0H−1/2. (12)

We shall now examine if it is really possible to trans-
form our metric (1) into comoving coordinates. The
condition expressing orthogonality of the metric and
the condition that the radial coordinate r is comoving
yield the following two differential equations for the
time coordinate t and for r

e2µu1
∂t

∂η
+ e2λu4

∂t

∂ξ
= 0, (13)

u1
∂r

∂ξ
+ u4

∂r

∂η
= 0. (14)

Equation (13) simplifies beautifully and we obtain

t = eεη/η0 sin
ξ

2
. (15)

However, with the substitutions x = e−2εη/η0 and y =
sin ξ

2
we find that equation (14) reads

(ay2 + bx)2/3(1 − y2)y5/3 ∂r

∂y
+ x2 ∂r

∂x
= 0, (16)

where a and b are arbitrary nonzero constants. We
have not been able to integrate equation (16). Hence,
we can not write the solution in comoving coordinates.
But we shall still be able to discuss several interesting
physical aspects concerning this model.

3. Four velocity field

The expansion Θ is given by

Θ = εH−3/2{−
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The four-acceleration u̇i reads
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The shear tensor σij reads
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The shear invariant reads

σijσ
ij =

2

27
e2εη/η0 sin4

ξ

2
H−3K2. (25)

In Kramer et al. (1980) we find the following state-
ment concerning the solutions given by McVittie and
Wiltshire (1977), ”not all of their solutions have non-
zero shear!”. With our new and previous results we
can sharpen that statement and declare the McVittie-

Wiltshire solutions which are non static and not tri-

vially conformally flat all have expansion, acceleration

and shear.

4. Sound speed and gradients

The speed of sound vsound is given by
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The sound speed at the centre (ξ = π) reads
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We now follow the process we used to obtain physically
valid regions of spacetime, i.e. we restrict spacetime to
regions where e2εη/η0 ≈ 0. For these regions we have

v2

sound(centre) = −
7(Pc + 2)

3(5Pc − 2)
. (28)

We demand the sound speed to be real and less than
the speed of light in vacuum. The following conditions
must then be fulfilled

0 < −
7(Pc + 2)

3(5Pc − 2)
< 1, (29)

Remembering condition (9) we obtain the following re-
striction

Pc ∈ 〈−1.225 , −0.364〉. (30)

The ratio of the gradients with respect to comoving

radial coordinate r is given by

(
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This expression simplifies beautifully and we find

∂p

∂r
=

∂ρ

∂r
. (32)

We thus have the remarkable fact that the pressure gra-

dient and the density gradient with respect to comoving

radial coordinate are the same.

5. Mass function

The mass function is given by

m =
4

3
πρR3 + E, (33)

where E is interpreted as pure gravitational field energy
(not binding energy) within spheres of surface radius
R. However, we also have
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and we obtain
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We further find
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The gravitational field energy E, however, takes the
simple form

E =
8e−εη/η0(P − 1)2

27P 5/3
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ξ

2
(1 − sin2

ξ

2
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and both the mass function m and the gravitational
field energy E vanish at the centre of the matter dis-
tribution. We further obtain

(

2m

R

)

c

= 0 (38)

and we conclude that no apparent horizon or trapped
surface exist close to the centre. The criterion to have

Lorentz-Minkowski geometry at the origin is given by

B2
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(
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We find

(

∂R

∂r

)2
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16
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Remembering definition (10) we find that there is

Lorentz-Minkowski geometry at the origin.
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