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ABSTRACT. The astronomical observations of the
last years show that there are the regions in the Uni-
verse with much lower density of matter, than their
surroundings. Theoretical studies of the regions (voids)
in the model of the expanding Universe are carried on
different directions. In this paper the voids have been
built by means of matching Tolman and Friedman solu-
tions. The Lichnerovich-Darmois matching conditions
are used. It is shown that in expanding Universe with
flat space the voids can not exist. So we have Friedman
Universe with voids, with described by the Tolman so-
lution. The models of voids in the Friedman Universe
with negative spatial curvature have been built.
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1. Introduction

The astronomical observations of last years shows
that there are the regions in the Universe with much lo-
wer density of matter than their surroundings (Thom-
pson and Vishniac 1987; de Lapparent, Geller and Huc-
hra 1986). Theoretical studies of these region (voids)
in the models of the expanding Universe are carried
on different directions (Redmouth 1988; Suto, Sato,
and Sato 1984): small perturbations of homogeneous
Universe; use of the Einstein-Straus model; use of the
Tolman solution for the nonhomogeneous dust; consi-
deration of the boundary of the void as the thin wall.

In this paper we use the Tolman spherically sym-
metric dust solution for the description of voids space-
time, and Friedman solution for the description of the
space-time of the surrounding Universe.

2. The Tolman solution

The Tolman solution for nonhomogeneous dust has
the following form:

ds2 = dt2− r′2(R, t)

f2(R)
dR2− r2(R, t)(dΘ2 +sin2 Θdϕ2) ,

(1)

where

r(R, t) =
m(R)

1 − f2(R)

{

sin2(α/2)

− sinh2(α/2)

}

for

{

f2(R) < 1
f2(R) > 1

;

(2)

t−t0(R)=
m(R)

|1− f2(R)|3/2

{

α−sin α

sinh α−α

}

for

{

f2(R) < 1
f2(R) > 1

;

(3)

r(R, t) =

[

±2

3
m(R)1/2(t − t0(R))

]2/3

for f2(R) = 1.

(4)
The velocity of light c = 1. The prime means ∂/∂R.
m(R), f(R) and t0(R) are the arbitrary functions of
integration. m(R) is the hole mass of the dust ball
with radial coordinate R, f(R) is the hole energy of
the test particle, which is on the distance R from the
centre. t0(R) determines the time of the collapse.

The density of the energy is given by

ε(R, t) =
1

8πγ

m′(R)

r2(R, t)r′(R, t)
, (5)

where γ is the Newton gravitational constant.

Friedman solution for homogeneous dust is the par-
ticular form of the Tolman one:

m(R) = a0







sin3(R)

sinh3(R)
R3







for







f2(R) = cos2(R)
f2(R) = sinh2(R)
f2(R) = 1

,

(6)
t0(R) = 0, a0 = const.
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3. The matching conditions

We use the Lichnerovicz-Darmous matching condi-
tions, which consist in following: the first and the se-
cond differential forms of the matched metrics are the
same on the matching hypersurface. We consider two
different Tolman metrics and choose the hypersurface
R = Rb = const as the matching hypersurface. Then
the matching conditions have the following form:

r1(Rb, t1) = r2(Rb, t2),

f1(Rb) = f2(Rb), (7)

m1(Rb) = m2(Rb),

where index “1” and “2” mark the first and second
matched metrics, respectively.

4. The voids, described by the flat space-time

Bonnor and Chamorro considered the voids as the
Minkowski space-time (Bonnor, and Chamorro 1990;
Bonnor, and Chamorro 1991). They have shown that
such voids can not exist in the Friedman Universe. But
it is possible to choose the definite Tolman Universe
and such Universe can have the voids which are desc-
ribe by the empty space-time. It was to be expected
that this Tolman Universe must be sufficiently exotic.

Friedman Universe also can not have the voids which
are described by the other Friedman space-time. Un-
der this assumption the matching conditions are not
fulfilled.

So we consider the Tolman space-time as the space-
time of the “void”, and Friedman space-time as the one
of the surroundings.

5. Friedman model

Let us assume that the Universe have been described
by the parabolic Friedman model. Under this condition
the void is described by the parabolic Tolman model.
The matching conditions demand the same spatial cur-
vature of the void and of the surroundings space-time.
The arbitrary function f(R) determines the spatial cur-
vature. So we choose the function f(R) in the voids the
the same, as it has been chosen in Friedman space-time
f2(R) = 1. Exactly this choice of f2(R) permit us to
consider the space coordinate R as the same in the void
and in the surrounding space-time. From the matching
conditions we have obtained that on the matching hy-
persurface tT = tF + t0(Rb).

The average density of energy in the void is given by

ε̄ =
M

V
=

Rb
∫

0

ε
√−g dR dΘ dϕ

Rb
∫

0

√
−g dR dΘ dϕ

=

Rb
∫

0

m′

f(R)
dR

Rb
∫

0

r2r′

f(R)
dR

. (8)

For the parabolic Tolman model with f2(R) = 1
from (8) we obtain

ε̄ =

Rb
∫

0

m′(R) dR

Rb
∫

0

r2r′ dR

=
3m(Rb)

r3(Rb, tT )
. (9)

For the Friedman homogeneous model we can write
the expression for the ε̄ in the following form

ε̄ = ε(t) =
m′(R)

r2r′
=

3m(R)

r3(R, t)
. (10)

Because energy density (10) is independent from R,
we can replace the value R in the expression (10) to
the value Rb, then we obtain

ε̄ = ε(t) =
3m(Rb)

r3(Rb, tF )
. (11)

¿From (7), (9) and (11) we can see that in parabolic
Friedman model the voids can not exist, because the
homogeneous energy density in the external space and
the average density in the internal space are the same.

6. The voids in hyperbolic Friedman Universe

Let us consider the “voids” in the hyperbolic Fried-
man model. We take the mass function of the voids
as

mV = a0

sinhn+1 R

sinhn−2 Rb

, (12)

where n is arbitrary whole number.
For the different n the observing mass M , the volu-

mes V and the average density of the voids have been
calculated. We have consider the possibility of the for-
mation of the little and the big voids (Rb → 10−2,
10−1, 1, 2). We have chosen t0(R) → 0, Rb, sinh Rb.
From calculation we have obtained that the Tolman
time always is greater than Friedman one. There are
not exist the voids when t0(R) = 0. For n ≥ 3 we have
voids only in earlier Universe, now they can not exist.

The parameters of the models of the voids with n = 1
and t0(Rb) = Rb are given in the tables 1, 2, 3, and 4.
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Table 1: Model of void for Rb = 0.01.
Rb tT VT /VF MT /MF ET /EF

0.01001 8.9 0.15
0.0101 1.1 0.92
0.011 1 1
0.02 1 1

0.01 0.11 1.01 1 0.99
0.26 1.13 0.88
0.51 2.4 0.44
0.76 7.26 0.13

1.01 22.14 0.05

1.51 156.8 0.0065

Table 2: Model of void for Rb = 0.1.
Rb tT VT /VF MT /MF ET /EF

0.10001 8.5 · 104 1.2 · 10−5

0.1001 9.3 · 102 1.1 · 10−3

0.101 11 0.09
0.11 1.17 0.85

0.1 0.2 1.05 1 0.95
0.35 1.12 0.89
0.6 1.5 0.67
0.85 2.86 0.35

1.1 5 0.2

1.6 24.5 0.041

Note, that the masses of the voids (MT in the ta-
bles) are the same as the Friedman mass (MF in the
tables) in the region limited by Rb. But the volumes of
the voids are greater than the corresponding Friedman
volume.

ET is the average energy density in the voids, EF

— the same in the Friedman space-time. Present time
corresponds to the marked line.

¿From the tables we can see, that the ratio ET /EF

is changed. This value is very little near the begin-
ning of the Universe, then it increases some time, and
decreases again. So at present time the voids can exist.

Conclusions show that these models describe the vo-
ids of different size. The voids are changing in time.

Table 3: Model of void for Rb = 1.
Rb tT VT /VF MT /MF ET /EF

1.00001 1.4 · 109 7.4 · 10−10

1.0001 1.5 · 107 7 · 10−8

1.001 1.5 · 105 7 · 10−6

1.01 1.6 · 103 6.5 · 10−4

1 1.1 29 1.04 0.038
1.25 9.8 0.11
1.5 4.2 0.11
1.75 11.9 0.09

2 18.9 0.06

2.5 61 0.017

Table 4: Model of void for Rb = 2.
Rb tT VT /VF MT /MF ET /EF

2.00001 4.5 · 1010 2.4 · 10−9

2.0001 4.9 · 108 2.4 · 10−7

2.001 4.9 · 106 2.4 · 10−5

2.01 5.1 · 104 2.4 · 10−3

2 2.1 653.3 1.15 0.0017
2.25 108.2 0.011
2.5 101.8 0.011
2.75 111.6 0.01

3 152.9 0.007

3.5 400 0.003
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