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ABSTRACT. Star clusters with very high densities
may play an important role in QSO and nuclei of
galaxies. This role is strongly influenced by relativistic
instability which can be reached at different critical
densities under particular conditions (e.g. the forma-
tion of massive black holes in AGN’s). On the other
hand it exists the possibility to have stable relativistic
clusters with arbitrarily large central redshift (and
density). The equilibrium and stability of relativis-
tic clusters described by a Maxwellian distribution
function with a cutoff in phase space is discussed.
The results are compared and contrasted with ones
existing in literature.
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1. Introduction

The question of existence of relativistic clusters is
open since the discovery of quasars: are the clusters so
dense that relativistic corrections to Newtonian the-
ory modify their structure and influence their evolu-
tion? Theoretical calculations suggest that clusters
might form in the nuclei of some galaxies and quasars,
and the formation of massive black holes in quasars
and active galactic nuclei (AGNs) could be a result of
a collapse of dense stellar clusters. Nevertheless as-
tronomical observations have yielded no definitive evi-
dence about the existence of relativistic clusters, even
if, with HST observations, there is the possibility to
resolve this issue completely.

The study of models of equilibrium describing rel-
ativistic clusters and the investigation of the stability
against relativistic collapse of such dense systems were
developed in two different papers by Bisnovatyi-Kogan
et al. (1993, 1998). In these papers were introduced
three different stability methods similar to the static
criteria for stars. These methods have been applied to
sequences of equilibrium models, with different cutoff
parameters in the distribution function, which general-
ize the ones studied by Zel’dovich & Podurets in 1965.
Different regions of dynamical stability were discovered
at different values of temperature and central redshift
extending the range of stable configurations up to very

large central densities.

The investigation of the models with different cut-
off parameters arises from the necessity to consider all
kind of cutoff realized in the stellar clusters. For giant
elliptical galaxies, with small rotation and absence of a
disk subsystem, we may expect very extended central
objects, corresponding to large values of energy cut-
off. For AGNs in spiral galaxies, like SyG, the cutoff
is probably produced by the tidal action of the spirals
and depends on the spiral structure in regions close to
the center; here we may expect very small values of
energy cutoff.

Dense stellar clusters are essentially represented by
massive globular clusters with M ∼ 106M�, active
galactic nuclei and quasars with M ∼ 108 − 1010M�,
respectively.

2. History

Starting from the classical paper of Einstein (1939)
on relativistic clusters, where a system formed by grav-
itating masses with circular motion around the center
of symmetry was studied, the equilibrium and the dy-
namical stability of these systems was first analysed by
Zel’dovich & Podurets (1965). In this paper was shown
that the contraction of an high-density stellar cluster
caused by evaporation of star may lead to a loss of
stability and cause a relativistic collapse.

In the successive years this problem was developed
in several works by Thorne (1966), Fackerell (1968)
and Ipser (1969) who introduced virial methods in or-
der to improve the results on stability. In particular
the results by Ipser indicated a critical value of central
redshift zc ∼ 0.5 for which instability occurs. On the
other hand, in 1969, Bisnovatyi-Kogan & Zel’dovich
had shown the existence of stable configurations with
arbitrarily large central redshift for a particular set of
solution with density distribution ρ ∼ β/r2.

The investigation of equilibrium and dynamical sta-
bility of relativistic clusters was extended by Suffern &
Fackerell in 1976 and systematically studied and gen-
eralized in recent papers by Bisnovatyi-Kogan et al.

(1993, 1998). In these papers the problem was defi-



Odessa Astronomical Publications, vol. 12 (1999) 211

nitely solved by the analysis of the behaviour of bind-
ing energy in the zc-T diagram of the equilibrium so-
lutions with the extension of the region of dynamically
stable configurations even at values of central redshift
larger than 0.5; in particular the main result was the
existence of stable configurations with arbitrarily large
central redshift as indicated by Bisnovatyi-Kogan &
Zel’dovich in 1969, for a particular set of solutions,
and by Merafina & Ruffini in 1995 with the introduc-
tion of an explicit relation between a particular fam-
ily of stable solutions and the results of the numerical
simulations obtained by Rasio et al. in 1989 indicating
stable models with large values of zc.

From thermodynamical point of view the results on
the stability are incomplete. The methods used for
stability analysis give results generally accepted only
in Newtonian regime with the well known paper of
Lynden-Bell & Wood in 1968 about gravothermal in-
stability and the ones of Katz (1978, 1980), while in
relativistic regime the problem is still open.

The problem of gravothermal catastrophe goes back
to Antonov theorems (1962) and becomes very pop-
ular with the paper of Lynden-Bell & Wood (1968)
in which the term “gravothermal catastrophe” was
coined. Antonov’s discovery was that no state of lo-
cally maximal entropy exists for stellar sistems of given
energy E < 0 and mass M within a spherical box of
radius greater than R = 0.335 GM 2/(−E).

In Lynden-Bell and Wood paper the problem is anal-
ysed by studying the behaviour of a gaseous system
confined in a spherical box with adiabatic walls. The
gravitational equilibrium of the system is granted by
the application of the virial theorem. Each particle of
the system moves in the field generated by the other
particles (mean field approximation). The result is that
such a system has a negative total specific heat, with
the core of the system with negative value and a bath

surrounding the core with a positive value. Then, if we
start with an isothermal equilibrium state and consider
the effect of a perturbation which causes a flow of heat
from an inner shell to an outer one, we have that this
transfer from central regions will raise the temperature
and the central density without limit inducing also the
collapse of the core of the system. This phenomenon is
the well known process called gravothermal catastro-
phe.

Clearly, gravothermal catastrophe is possible also
in isothermal stellar systems where the equilibrium
configurations are similar to gaseous spheres with
equivalent velocity distribution. However, while in
an isothermal gas gravothermal catastrophe develops
by heat conduction with a timescale of the order of
diffusion time (by collisions among the particles of the
system), in a star cluster, due to stellar encounters,
gravothermal catastrophe develops on a timescale of
the order of the relaxation time. Globular clusters
have a timelife larger than their relaxaton time and

therefore gravothermal catastrophe may be realistic in
the evolution of these systems.

3. Spherical models

In order to analyze the stability of stellar systems
we consider the equilibrium of an isothermal relativis-
tic sphere of particles (stars), of the same mass, with
a distribution function fulfilling Boltzmann statistics.
The energy of the stars is limited by a cutoff in phase
space and the distribution function is given by

{

f = A exp(−E/T ) for E ≤ Ecut

f = 0 for E > Ecut,
(1)

where Ecut = mc2 − αT/2 is the cutoff energy of the
stars and T is the temperature “measured by an in-
finitely remote observer”, in energy units, constant on
each single equilibrium configuration. The parameter
α is a constant for each configuration and can vary from
0 to 2.87. The upper limit on α is a condition on the ex-
istence of equilibrium solutions (see Bisnovatyi-Kogan
et al., 1998). For α = 1 we recover the distribution
considered by Zel’dovich & Podurets in 1965.

The equations of gravitational equilibrium for
a spherically symmetric system described by the
Schwarzschild metric ds2 = eνc2dt2 − eλdr2 − r2(dθ2 +
sin2 dφ2) are given by
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where P is the pressure and ε = ρc2 is the energy den-
sity. The expressions of these thermodynamical quan-
tities are easily obtained from the distribution function
given in Eq. 1. We have
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−αT/2

mc2eν/2

e−E/T (e−νE2 − m2c4)3/2dE
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and
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−αT/2
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√

e−νE2 − m2c4 E2dE.

(4)
We obtain different families of equilibrium solutions

depending on three papameters: α, T and zc (central
gravitational redshift). If we consider the entire range
of possible values of α, we can obtain equilibrium con-
figurations characterized by estreme core-halo density
profiles as well as more homogeneous configurations.
The results of these integrations are summarized in
Fig.1. In this diagram we plotted the central redshift
zc as a function of the temperature T . Along each se-
quence of equilibrium models α is constant and T varies
until a maximum value and become constant for large
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Figure 1: Sequences of equilibrium configurations with
different values of α in the plane zc-T .

zc. For α = 1 we obtain the solution of Zel’dovich &
Podurets with the well known limit in the temperature
T/mc2 = 0.227.

The calculations have shown that equilibrium
solutions exist only for values of α < 2.87. It is
also evident at small values of the temperature the
α–curves deforme so that they become to consist
of two separate branches: one looping in the origin
(zc = 0, T = 0) and one coming from. This fact is due
to the behavior of the solutions in Newtonian regime
where, for each value of α, more different equilibrium
configurations may be.

4. Dynamical stability

Dynamical stability of isothermal configurations
is studied since many years. Newtonian solutions
are always stable against radial perturbations, being
df/dE < 0 (Antonov, 1960). In relativistic regime the
problem has been analysed by Ipser in 1969 and by
Suffern & Fackerell in 1976 for configurations with suf-
ficiently large values of the temperature T . The con-
clusions were that only configurations with redshift zc

smaller than 0.5 can be stable against radial pertur-
bations. At low temperature regimes, the conclusions
were uncertain, even if the possibility to have stable
configurations with larger values of zc was taken into
account.

Now, for investigating the dynamical stability
of dense stellar clusters with distribution function
given by Eq. 1, we use three different approaches
(Bisnovatyi-Kogan et al., 1998).
1. Sequences of models with a fixed cutoff parameter,
changing in accordance with the adiabatic condition
pcut ∼ n1/3.
2. Sequences of models with constant specific entropy.
3. Sequences of non-Maxwellian models, constructed
from the condition of conservation of adiabatic invari-
ant.

4.1. Sequences with a fixed cutoff parameter

The parameters

W0 =

(

εcut

Tr

)

r=0

and β =
TR

mc2
, (5)

where Tr = Te−ν/2 is the local temperature varying
along the cluster and εcut = (p2

cutc
2+m2c4)1/2−mc2 =

Ee−ν/2 − mc2 the kinetic energy cutoff, are connected
with T and α by the following relations
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T

mc2 − αT/2
(6)

and

W0 =
1 − eν(0)/2

T/mc2
−

α

2
. (7)

The first of the sequences used for stability analysis
is the sequence with constant W0 and varying β.
The parameter W0 can be taken as approximately
adiabatic. The equivalence of this stability criterion
with the one suggested by Ipser in 1980 was definitely
shown by Bisnovatyi-Kogan et al. in 1993 for models
with α = 1: this sequence near the critical point
corresponds to the one relevant in the application of
the Ipser’s criterion. This correlation near the critical
point keeps also at α 6= 1 for models with T/mc2 > 1.5
and leads to results in accordance with the ones given
in literature.

4.2. Sequences with a fixed specific entropy

By introducing the expression of the entropy of a
system with arbitrary distribution function

S =

∫∫

f(1 − ln f) d3p d3r , (8)

we investigate the sequences with the fixed specific en-
tropy S/N0, where N0 is the total number of stars. The
expression of the specific entropy is

s ≡
S

N0
= [1 − ln(A/A∗)] +

∫ R

0
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T
∫ R

0
eλ/2nr2dr

, (9)

where A∗ is an arbitrary constant along the sequence
with the dimension of A.

4.3. Sequence with the conservation of the adiabatic

invariant

The conservation of the adiabatic invariant I =
pn

−1/3
c (see Podurets, 1969) along the sequence of mod-

els implies the introduction of non-Maxwellian distri-
bution functions

f = A exp
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with the cutoff parameters

pcut = pcut0
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)1/3

=
pcut0

κ
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.

(11)
The expression for pcut0 is determined from the cutoff
relation of the initial Maxwellian model with T = T0

and ν = ν0(r). We have

(p2
cut0c

2 + m2c4)1/2 eν0(r)/2 = mc2 − αT/2 . (12)

The procedure of construction of approximate equi-
librium models with non-Maxwellian distribution
function is described in details in the paper of
Bisnovatyi-Kogan et al. (1993).

By using the three static criteria of dynamical
stability mentioned above, we can construct a curve
dividing the equilibrium solutions in two separate re-
gions (see Fig.2 below). The results are in accordance
for each different criterion. We have stable solutions
in the region at small central redshift (close to T–axis)
and in the region at small temperature (close to
zc–axis). This line seems to have an asymptotic
behavior for large values of T or zc: in the regime of
small central redshifts, investigated by Ipser in 1969,
there are no stable solutions with zc > 0.4832 for
large T ; for small temperature there are no stable
solutions with T/mc2 > 0.06 for large zc. Therefore it
exists a new region of stable solutions which extends
at even large zc up to infinite central densities, with
temperature T/mc2 less than 0.06. This stable equi-
librium configurations present a regular center without
singularities even for very large density. However there
is a very sharp separation between core and envelope,
the core being up to only 10−4 times the radius of the
cluster ! The core is in gravitational equilibrium with
the external region: there is no possibility of existence
for a so dense core without the envelope which permits
to the system to be stable as a whole. Moreover the
value of the ratio 2GM/Rc2 is small and of the order
of the ones relevant for Newtonian configurations.

5. Thermodynamical stability

The role of thermodynamical instability in dense
stellar clusters is not clear. The results in relativis-
tic regime existing in literature are not yet definitive.
Nevertheless it is possible to analyse the thermody-
namical stability by applying the linear series method,
first introduced by Poincaré in 1885, to the sequences
which are relevant for this kind of perturbations. In
fact, if we consider sequences of equilibrium configura-
tions for which some quantities (invariant during the
perturbations) are constant, then the first maximum

of binding energy in each sequence indicates the on-
set of instability. Sequences with N = constant and
f [Ecut(r = R)] = constant, are relevant for thermody-
namical stability.

This criterion was erroneously applied to these par-
ticular sequences by Ipser in 1980, in order to obtain
the onset of dynamical instability. However, the re-
sult was correct anyway because both the onsets of
thermodynamical and dynamical instability coincide in
the region where the criterion was applied (zc ∼ 0.5
and T/mc2 > 0.06). In fact, in that particular region
of plane zc-T , the maximum of binding energy is the
same both for sequences with constant W0, relevant in
the analysis of dynamical stability, and for sequences
relevant in the analysis of termodynamical instability.
The equivalence of these two stability criteria was ev-
idenced by Bisnovatyi-Kogan et al. (1993) and is eas-
ily deducible from the behaviour of binding energy as
function of redshift and temperature (see 3-D diagram
of Fig.8 in Bisnovatyi-Kogan et al. 1998) and from the
sequences at constant f [Ecut(r = R)] and W0. Differ-
ences are indeed evident for configurations with suffi-
ciently low temperatures (T/mc2 < 0.06), where the
critical curves bifurcate (see below).

In Newtonian regime we recover results in complete
accordance with the ones given by Lynden-Bell and by
Katz. In relativistic regime the results are shown in
Fig.2, where the curve of the onset of thermodynam-
ical instability is compared with the one relevant for
dynamical instability in the zc-T diagram.
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Figure 2: Dynamical and thermodynamical stability
diagram in the plane N=const.

As preliminarily indicated, it is interesting to note
that for T/mc2 > 0.06 (large stars velocities) both
curves coincide in correspondence to the well known
critical value of central redshift zc ' 0.5 obtained for
dynamical instability. The two curves bifurcate for
T/mc2 < 0.06 (low stars velocities). The dynami-
cal curve never reaches Newtonian regime and has an
asymptotical behaviour towards a critical value of the
temperature. All the configurations having a tempera-
ture lower than 0.06 mc2 are dynamically stable for
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arbitrarily large values of the central redshift. The
thermodynamical curve, indeed, tends to Newtonian
region and, for small values of the temperature coin-
cides with the curve corresponding to the family of
configurations with W0 = 7.6 (in complete accordance
with classical results). The parameter W0 represents
the gravitational potential expressed in terms of the
local temperature (in energy units) at the center of the
configuration. This parameter is connected with the
main quantities by the relation

W0 =
mc2

T

(

eνR/2 − eν0/2
)

. (13)

It is important to recall here some considerations
about the evolution of a system which lost thermo-
dynamical stability in consequence of collisions and
evaporation of stars being still dynamically stable.
Such a system begins to contract and heat his core,
having central regions with negative specific heat
(see Lynden-Bell & Wood 1968). This fact implies
a motion in the zc-T diagram towards the region
of dynamical instability and the system will fatally
cross the critical curve (vertical) at T/mc2 ' 0.06,
becoming dynamically unstable and leading to a faster
collapse.

6. Conclusions

The results of the investigation on the stability
against relativistic collapse of families of equilibrium
configurations with different cutoff parameters can be
summarized as follows (see Fig.2).

The region of the plane zc-T with T/mc2 > 0.06
corresponds to the traditional families of equilibrium
configurations whose dynamical stability was largely
investigated in the past. The three different criteria
for investigating the stability give results in agreement
among them and with the results of previous analysis
(see, e.g., Ipser 1969). In this regime there are not
stable configurations with zc larger than 0.5. These
results confirm this conclusion and are now obtained
with more accuracy.

The region of the plane zc-T with T/mc2 < 0.06
corresponds to extreme core-halo configurations whose
stability analysis carried out by Suffern & Fackerell
(1976) did not supply conclusive results. In contrast
with that conclusions the results show that these con-
figurations are stable. The dense core is in gravita-
tional equilibrium with a Newtonian envelope, which
permits to the system to be stable as a whole. Thus
we come to the interesting conclusion that there exist

stable non singular configurations with arbitrarily large

central red-shift.
It must be noted that the results of Ipser (1969) and

Fackerell (1970), also reported by Suffern & Fackerell
(1976), already indicated that models with small tem-

peratures could be stable even for values of the cen-
tral red-shift larger than 0.5 but only until a limiting
value of zc. Nevertheless the authors came to a dif-
ferent conclusion by considering the behaviour of the
curve of the maxima of the fractional binding energy.
Application of these criteria to the particular solution
obtained by Bisnovatyi-Kogan & Zel’dovich (1969) has
shown that it satisfies the necessary condition for the
stability, but is unable to establish the sufficient con-
dition (Bisnovatyi-Kogan & Thorne 1970).

The results on the thermodynamical stability show
that the critical curve of onset of thermodynamical in-
stability lies at smaller values of central redshift than
ones concerning the dynamical curve. From this follows
that thermodynamic stability always implies dynamical

stability.
Furthermore, while dynamical instability is reach-

able only in relativistic regime, thermodynamical
instability can occur also in Newtonian regime. Conse-
quently, thermodynamical instability always drives the
system towards dynamical collapse which occurs only
in relativistic regime after a contraction and heating
of core. Therefore, even if in principle it is possible to
have systems dynamically stable with an arbitrarily
large central redshift, the core contraction induced
by thermodynamical instability will lead anyway to a
dynamical collapse.
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