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ABSTRACT. The theory of spiral structure of
rotationally supported disk-shaped galaxies has a long
history, but is not yet complete. Even though no
definitive answer can be given at the present time, the
majority of experts in the field is yielded to opinion
that the study of the stability of gravity perturbations
(e.g., those produced by spontaneous disturbances)
in disk galaxies of stars is the first step towards an
understanding of the phenomenon. We analyse the
reaction between almost aperiodically growing Jeans-
unstable gravity perturbations and stars of a rotating
and spatially inhomogeneous disk of highly flattened
galaxies. A mathematical formalism in the approxi-
mation of weak turbulence (a quasi-linearization of the
Boltzmann collisionless kinetic equation) is developed,
which is a direct analogy with the plasma quasi-linear
(weakly nonlinear) formalism. A diffusion equation
in configuration space is derived which describes the
change in the main body of equilibrium distribution
of stars. The distortion in phase space resulting from
such a wave-star interaction is studied. The theory,
applied to the Solar neighborhood, accounts for the
increase in the random stellar velocities with age and
the essential radial spread of the Galaxy’s disk. We
argue that the Sun has migrated from its birth-place
at the galactocentric radius r = 6 − 7 kpc in the inner
part of the Galaxy outwards by ∆R⊙ = 2 − 3 kpc
during its lifetime of t ≈ 4.5 × 109 yr. This ∆R⊙

is in fair agreement with the estimate of Wielen et
al. (1996) ∆R⊙ ≈ 1.9 kpc based on a radial galactic
gradient in metallicity.
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1. Introduction

The bulk of the total optical mass in the Milky Way
and other flat galaxies is in stars. In the spirit of Lin et
al. (1969) and Shu (1970), we regard spiral structure
in most galaxies of stars as a wave pattern, which does
not remain stationary in a frame of reference rotating

around the center of the galaxy at a proper speed,
excited as a result of the gravitational Jeans-type
instability. The instability is set in when the destabi-
lizing effect of the self-gravity in the disk exceeds the
combined restoring action of the pressure and Coriolis
forces. The wave propagation is a process of rotation
as a solid about the center of the galaxy at a fixed
phase velocity, despite the general differential rotation
of the system. The instability is driven by a strong
nonresonant interaction of the gravity fluctuations
with the bulk of the particle population, and the
dynamics of Jeans perturbations can be characterized
as a fluidlike wave-particle interaction. The instability
represents the ability of a self-gravitating disk to relax
from a nonthermal (or an almost nonthermal) state by
collective collisionless processes in much less time than
the binary collision time. It is our purpose to extend
the investigation by studying the natural nonlinear
effects. The problem is formulated in the same way as
in plasma kinetic theory (Krall & Trivelpiece 1986).

2. Basic Equations

A thin rotating disk is taken as a model of the flat
galaxy in many papers for analysis of the gravity per-
turbations. Following Morozov (1981), Griv & Peter
(1996), and Griv et al. (2000, 2001, 2002), we solve
the system of the collisionless Boltzmann equation and
the Poisson equation describing the motion of a self-
gravitating ensemble of stars in such a system within
an accuracy of up two orders of magnitude with re-
spect to small parameters 1/|kr|r and cr/rΩ for the
radial wavenumber kr, the dispersion of radial pecu-
liar velocities cr, and the angular velocity Ω, looking
for waves which propagate in a two-dimensional galac-
tic disk. This approximation of an infinitesimally thin
disk is a valid approximation if one considers pertur-
bations with a radial wavelength λ = 2π/kr that is
greater than the typical disk thickness.

In configuration space we introduce cylindrical coor-
dinates r, ϕ, z, and 0z axis directed along the axis of
rotation. The projections of the peculiar velocity of a
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star on the coordinate axis is designated by vr, vϕ, vz,
respectively. Let us assume that the stars move in the
disk plane so that vz = 0. This allows us to use the two-
dimensional distribution function f(r, ϕ, vr, vϕ, t) such

that f̃ = fδ(z)δ(vz), f =
∫

f̃dzdvz, and
∫

fdvrdvϕ =
σ, where σ(r, t) is the surface density. In galaxies the
function f(r,v, t) must satisfy the Boltzmann collision-
less equation of continuity
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In Eq. (1), Φ(r, t) is the total gravitational potential
(including a dark matter, if it exists at all) determined
self-consistently from the Poisson equation
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where δ(z) is the Dirac delta-function with respect to
the spatial coordinate z. The Boltzmann and Poisson
equations with appropriate boundary conditions give a
complete description of the problem for disk modes of
collective oscillations. The relationship between the
frequency of the oscillations and the wave vector is
found by equating the solutions of Eqs. (1) and (2).

Suppose that up to the time t = 0 the disk remains
in a stationary state, i.e., for t < 0

f = fe and Φ = Φe ,

where fe and Φe are the equilibrium distribution func-
tion and the equilibrium gravitation potential, respec-
tively. At t = 0 the disk is perturbed in some manner,
so that for t > 0

f = fe + f1 and Φ = Φe + Φ1 .

The quantities f1 and Φ1 characterize the deviations,
or perturbations, of the distribution function and the
field from the corresponding equilibrium values. We
are interested in the time dependence of the perturba-
tions, which we will assume are small.

We proceed by applying the procedure of the quasi-
linear approach. In the quasi-linear theory, one may
follow the standard procedure of linearization by writ-
ing f = f0(r,v, µt) + f1(r,v, t) and Φ = Φ0(r, µt) +
Φ1(r, t) with |f1/f0| ≪ 1 and |Φ1/Φ0| ≪ 1 for all r

and t. The functions f1 and Φ1 are functions oscillat-
ing rapidly in space and time, while the functions f0

and Φ0 describe the slowly developing “background”
against which small perturbations develop; µ ≪ 1;
f0(t = 0) ≡ fe and Φ0(t = 0) ≡ Φe. The distribu-
tion f0 continues to distort as long as the distribution
is unstable. Linearizing Eq. (1) and separating fast and
slow varying variables one obtains the equation for the
fast developing distribution function

df1

dt
=

∂Φ1

∂r

∂f0

∂vr

+
1

r
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, (3)

where d/dt means total derivative along the star or-
bit and f0 is a given equilibrium distribution function
determined from the following equation (see Eq. (1)):

v·
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The equation for the slow part of the distribution
function is
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where 〈. . .〉 denotes a time average over the fast oscil-
lations,

f0 = 〈f〉 =
1

T

∫ T

0

fdt and 〈f1〉 = 〈Φ1〉 = 0 ,

and T is the characteristic time of the quasi-linear re-
laxation, i.e., the time during which the oscillations
influence the equilibrium state.

It is useful to define a generalized entropy function
(Krall & Trivelpiece 1986, p. 364)

Sgen = −

∫

f0 ln f0drdv . (5)

Contrary to the case of the true entropy
Strue = −

∫

f ln fdrdv, which is constant in the
absence of collisions, with this definition the “entropy”
is not constant, and can be used to measure the
increase of disorder (e.g., temperature) of the system.
It is, incidentally, just such a coarse-grained single-
particle distribution function f0 that is determined in
practice, particularly in stellar dynamics, where it is
determined in a fairly large region of phase space.

3. Perturbation

In the familiar Wentzel-Kramers-Brillouin (WKB)
approximation in Eqs. (3) and (4), assuming the weakly
inhomogeneous disk, each perturbation of equilibrium
parameters is selected in the form of a plane wave (in
the circular rotating frame)

X1(r,v, t) =
∑

k

Xkeikrr+imϕ−iω∗,kt + c.c. , (6)

In Eq. (6), Xk is an amplitude that is a constant in
space and time, m is the nonnegative azimuthal mode
number (= number of spiral arms), ω∗,k = ωk −mΩ is
the Doppler-shifted wavefrequency, r ∼ R, |kr|r ≫ 1,
|d ln kr/d ln r| ≪ 1, suffixes k denote the kth Fourier
component, and “c.c.” means the complex conjugate.
Evidently, in Eq. (6) X1 is a periodic function of ϕ,
and hence m must be an integer. The criteria for sta-
bility differ for each m, and must be determined by
a detailed analysis. The assumption that Xk has a



weak spatial dependence corresponds to the quasiclas-
sical approximation in quantum mechanics and to the
approximation of geometrical optics in the propagation
of light in an inhomogeneous medium. It is convenient
to write the eigenfrequency ω∗,k in a form of the sum
of the real part ℜω∗,k and the imaginary part iℑω∗,k.
The imaginary part of ω∗,k corresponds to a growth
(ℑω∗,k > 0) or decay (ℑω∗,k < 0) of the components
in time, f1, Φ1 ∝ exp(ℑω∗,kt), and the real part to a
rotation with angular velocity

Ωp =
ℜω∗,k

m
. (7)

Thus, when ℑω∗,k > 0, the medium transfers its energy
to the growing wave and oscillation buildup occurs.
A galaxy is considered as a superposition of different
oscillation modes. A disturbance in the disk will grow
until it is limited by some nonlinear effect.

In the linear theory, one can select one of the Fourier
harmonics:

X1(r,v, t) = Xkeikrr+imϕ−iω∗t + c.c. . (8)

The solution in such a form represents a spiral wave
with m arms (or a ring, m = 0) whose shape Φ1 in the
plane is determined by the relation

kr(r − r0) = −m(ϕ − ϕ0) .

With ϕ increasing in the rotation direction, we have
kr > 0 for trailing spiral patters, which are the most
frequently observed among spiral galaxies. A change
of the sign of kr corresponds to changing the sense of
winding of the spirals, i.e., leading ones. With m = 0,
we have the density waves in the form of concentric
rings that propagate away from the center when kr > 0
or toward the center when kr < 0.

Paralleling the analysis leading to Eq. (13) of Griv &
Peter (1996), from Eqs. (3) and (8) it is straightforward
to show that the perturbed distribution function is

f1 = −Φ1

∞
∑

l=−∞

∞
∑

n=−∞

exp[i(n − l)(φ − ζ)]

ω∗ − lκ

×Jl(χ)Jn(χ)

[

lκ
∂f0

∂(v2
⊥

/2)
+

2mΩ

rκ2

∂f0

∂r

]

, (9)

where Jl(χ) is the Bessel function of the first kind
of order l with its argument χ = k∗v⊥/κ, k∗ is the
effective wavenumber, v2

⊥ = v2
r + (2Ω/κ)2v2

ϕ, and
κ ∼ Ω is the epicyclic frequency. In Eq. (9) the
denominators vanish when ω∗ − lκ = 0. This occurs
near corotation and other resonances. The above
resonances take place where the frequency with which
a star crosses the peaks and dips of the wave potential,
|ω−mΩ|, is either zero (i.e., the star is always in phase
with the wave) or equal to the oscillation frequency
of the star about a circular orbit. The corotation

resonance occurs at a radius where l = 0 in Eq. (9).
The Lindblad resonances occur at radii where the field
(∂/∂r)Φ1 resonates approximately with the harmonics
l = −1 (inner resonance) and l = 1 (outer resonance)
of the epicyclic (radial) frequency of equilibrium
oscillations of stars κ(r). Clearly, the location of these
most important resonances depends on the rotation
curve and the spiral pattern speed Ωp; the higher
the m value, the closer in radius the resonances are
located (Lin et al. 1969). Resonances are places where
linearized equations describing the motion of particles
do not apply. In the vicinity of the resonances it is
necessary to use nonlinear equations, or to include
terms of higher orders into the approximate form of
the equations (Griv et al. 2000). In this work only
the main part of the disk is considered, which lies
sufficiently far from the resonances: in all equations
ℜω∗ − lκ 6= 0 (Lin et al. 1969; Griv et al. 2002).
The distortion of the wave packet due to the disk
inhomogeneity is included through the second term in
the brackets on the right-hand side in Eq. (9).

4. Diffusion Equations

We anticipate that the fluidlike Jeans-unstable oscil-
lations must influence the distribution function of the
main part of stars in such a way as to hinder the wave
excitation, i.e., to increase the peculiar velocity spread
ultimately at the expense of circular motion and grav-
itational energy. This is because the Jeans instability,
being essentially a gravitational one, tends to be sta-
bilized by chaotic motions of stars. Simultaneously,
unstable perturbations effectively transfer angular mo-
mentum outward to the outer parts of the system, as
mass flows both inward to the growing center mass con-
centration and outward to the outer regions through
gravitational torques. Eventually the disk evolves to-
ward a quasi-stationary Jeans-stable distribution.

Let us suppose that the nonlinear effects in galactic
disks are small, so that the linear theory is a good first
approximation. Next, we substitute the solution (9)
into Eq. (4) and average the latter over time. After av-
eraging over φ = arctan(2Ω/κ)vϕ/vr, the equation for
the slow part of the distribution function is obtained:
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where Ek = 8π|Φk|
2 exp(2ℑω∗t), and we considered

both ω∗ = ℜω∗ + iℑω∗ and the complex conjugate fre-
quency of excited waves ω∗

∗ = ℜω∗ − iℑω∗.



As usual in the quasi-linear theory, in order to close
the system one must engage an equation for Ek. Aver-
aging over the fast oscillations, we obtain

(∂/∂t)Ek = 2ℑω∗Ek . (11)

Equations (10) and (11) form the closed system of
quasi-linear equations for Jeans oscillations of the
rotating inhomogeneous disk of stars, and describe a
diffusion in both velocity and coordinate space.

4.1 Velocity Diffusion

Growing density waves (spiral arms) excite random
motions parallel to the equatorial plane. According to
Eq. (10), the heating efficiency of unstable density wave
features depends on their spatial and temporal form.
Let us evaluate the law for the age-velocity dispersion
rate 〈v2

⊥〉(t) and the heating ∆v⊥ for a realistic model
of the disk of the Galaxy in the Solar neighborhood
(〈v2

⊥〉 is the averaged squared velocity dispersion in the
z = 0 equatorial plane). In accordance with the theory
as developed above, we consider the fastest growing
mode with ℑω∗ ≈ Ω. According observations, in the
Solar vicinity Ek/Φ2

0 ≈ 10−2 (Lin et al. 1969), Φ0 ≈
0.5r2

⊙Ω2, r⊙ ≈ 8.5 kpc, cr(t = 0) ≈ 10 km s−1, and
κ ≈ 1.5Ω. From Eq. (10), one easily obtains

〈v2
⊥〉 ∝ t , (12)

and ∆v⊥ = 20 − 30 km s−1, where t = 109 yr (Griv
et al. 2001, 2002). These values of 〈v2

⊥〉 and ∆v⊥
are in agreement with both estimates based on the
observed stellar velocities (Wielen 1977; Grivnev &
Fridman 1990; Dehnen & Binney 1998) and N -body
simulations (e.g., Liverts et al. 2003). Thus already in
the first 3-4 galactic revolutions, in say about 109 yr,
the stellar populations see their epicyclic energy vary
by a factor of ten. de Souza & Teixeira (2007) have
detected such a velocity variation in 109 yr by con-
sidering the kinematic segregation of nearby disk stars.

4.2 Migration of the Sun’s Guiding Center

As we have mentioned above, the amplification
of spiral gravitational instabilities produces not only
heating but also redistribution of matter in the disk.
In this connection, there is considerable scatter in the
metallicities of stars that have a common guiding cen-
ter and age (Edvardsson et al. 1993). On the other
hand, it is widely believed that all interstellar material
at a given time and radius has a common metallicity.
The paradox can be resolved if one assumes that these
stars were born at different radii and then migrated to
its present locations as a result of a series of uncorre-
lated scattering events (Wielen et al. 1996).

The migration may be explained naturally by
“collisions” of stars with the Jeans-unstable density
waves. Let us estimate the scale of radial migration
∆R⊙ of the Sun’s guiding center. According to ob-
servations, we adopt the ratio Ek/Φ2

0 ≈ 10−2, m ≈ 1,
r⊙ = 8.5 kpc, and ℑω∗ ≈ Ω. Then from Eq. (10)
we obtain ∆R⊙ = 2 − 3 kpc (Griv et al. 2002).
This ∆R⊙ is in fair agreement with the estimate of
Wielen et al. (1996) ∆R⊙ ≈ 1.9 kpc based on a radial
galactic gradient in metallicity. We conclude that
the Sun has migrated from its birth-place at r ≈ 7
kpc in the inner part of the Galaxy outwards by ap-
proximately 2 kpc during its lifetime of t ≈ 4.5×109 yr.

5. Summary

With passage of time as the perturbation energy
increases, the initial distribution spreads (f0(v

2
⊥)

becomes less peaked) and the temperature grows
(Eq. (12)). In other words, the relaxation of the stars
takes place. Formally, the relaxation corresponds to
the presence of the collision integral on the right-hand
side of Eq. (10). In addition, the radial spread of the
disk is increased. The diffusion in configuration space
is due entirely to the growth of the Jeans-unstable
modes (ℑω∗ > 0) in a self-gravitating collisionless
system subject to a time-dependent potential.
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