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ABSTRACT. We investigated classical gravitational 

tests for the Kaluza-Klein model with spherical compacti-
fication of additional dimensions in the case of absence of 
a six-dimensional bare cosmological constant. We per-
turbed a background by a compact massive source with 
the dust-like equation of state in all spatial dimensions and 
obtained the solution of Einstein equations in the weak-
field limit. It enabled to calculate PPN parameter γ, and 
we obtained a strong contradiction to observations. 

 
Any theoretical model may be referred to physics only 

relative to the particular sphere of reality, where its find-
ings are confirmed by experiment. Certainly, outside this 
sphere the theory represents just an abstractive logical 
construction and completely loses a right to be called a 
physical theory. Obviously, in such a context the Kaluza-
Klein (KK) theory is not an exception and needs experi-
mental verification. 

There are a number of observable gravitational effects 
predicted by general relativity (GR). They include, as is 
well known, the Mercury perihelion shift, the deflection of 
light and the time delay of radar echoes (the Shapiro time-
delay effect). In the weak-field approximation it’s conven-
ient to calculate all these effects using the so-called pa-
rameterized post-Newtonian (PPN) parameters β  and γ  
[1]. These parameters are introduced as coefficients in the 
expansion of metrics in powers of a small parameter 

22 cϕ  in a following way: 
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Accordingly, experiments impose strict restrictions on 
these quantities. In particular, according to the Shapiro 
time-delay experiment using the Cassini spacecraft γ  
should be very close to the unity: ( ) 5103.21.21 −×±+=γ  

[2]. This fact is in good agreement with GR, where 1=γ . 
Hence, separating the linear in 22 cϕ  mode similar to (1) 
in the certain multidimensional model, we can detect the 
deviation of theoretical predictions from experimental 
data. It’s clear that the significant difference between γ  
and the unity points to the flaw in the considered theory. 

Now let us proceed directly to the KK-theory analysis. 
Let’s consider a factorizable 6-dimensional static back-
ground metrics 

( )2222222222 sin ηξξ ddadzdydxdtсds +−−−−= , 
,consta ≡  )[ ,2,0 πη ∈  [ ] .,0 πξ ∈              (2) 

It is defined on a product of the flat 4-dimensional (ex-
ternal) space-time and the 2-dimensional (internal) sphere 
with the radius a (in other words, a is the scale factor of 
the internal compact manifold). The metrics has topology 

23 S××RR .  We choose the space with nonzero curvature 
intentionally. The case of the flat metrics with topology 

33 −×× DTRR , where 3−DT  is a (D–3)-dimensional torus, 
has been investigated in [3]. As a result it was shown that 
in such a case ( )21 −= Dγ , and hence the condition 1=γ  
is satisfied only in GR, where 3=D . The question is how 
common is this negative result for the Kaluza-Klein mod-
els. To understand it, we generalize the problem to the 
case of the curved metrics. In contrast to the models with 
toroidal compactification, in the present problem we need 
some bare matter to provide nonzero curvature of the in-
ternal space. Now we want to define the energy-
momentum tensor (EMT) of this matter, using Einstein 
equations (also we consider the case of absence of a mul-
tidimensional cosmological constant): 

ikikik gRRT
2
1

−=κ , where 4
65

~2 cGS=κ .             (3) 

Here 38 2
5 π=S  is a total solid angle and 6

~G  is a 
gravitational constant in the 6-dimensional space-time. It 
is obvious that the only contribution to the scalar curva-
ture is provided by the Ricci tensor components corre-
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sponding to the internal compact manifold. Using general 
formulae, we easily compute those components and the 
curvature (for details see [4]): 

,sin,1 2
5544 ξ== RR   

the trace of the Ricci tensor is 
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Substitution of (4) into (3) gives us a desired EMT of 
the background matter. It has the following form: 
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Clearly, such matter can be simulated by a perfect fluid 
with the vacuum equation of state in the external space 
and the dust-like equation of state in the internal one. 

So, we found out the form of matter that corresponds to 
the considered geometric background, and now we intend 
to perturb this background by a static point-like mass. It’s 
well known that a point-like mass is a good approximation 
to calculate classical gravitational tests in GR. And cer-
tainly, the physical content of this approximation pre-
serves under the transition to multidimensionality. Thus, 
we make a perturbation of the background by a static mas-
sive source insertion. Let the perturbation have its non-
relativistic rest mass density of the form )( 5rερ . Here ε  
is an infinitesimal prefactor introduced to simplify keep-
ing of the perturbation orders during calculations and 

)( 5rρ  is a certain function of all spatial coordinates. There 
are two separate cases of this function’s form. In the first 
case the source with the rest mass m is uniformly smeared 
over the internal sphere and has its multidimensional den-
sity of the form ( ) ( ) )4()4( 2

3
2

33 ama πδπρρ rr == . In the 
second case a particle is localized on the sphere: 

( )55 )( rr δρρ m== . Indeed, the problem with delocalized 
perturbation is of more full physical sense, but we shall 
investigate the case without smearing, that is more general 
from the mathematical standpoint. We present the per-
turbed metrics in the following form: 
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Up to corrections of the first order in perturbation all 
unknown functions may be rewritten in such a way: 
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The terms indexed by zero correspond to the back-

ground metric components. Also we suppose that the di-
agonal form of the metric tensor is preserved, and we 
show below that Einstein equations have a solution in a 
suchlike assumption. Really, let’s try to solve the field 
equations rewritten as follows: 
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where ikT  is the total EMT.  

We can present the total EMT as a superposition 

ikikik TTT ~ˆ += , where the first term is the EMT of the pertur-
bation with the only component in the nonrelativistic limit 

( ) 2
500

ˆ сT rερ≈  (up to infinitesimals of the higher order). The 
second term is the EMT of the background. We suppose that 
the perturbation existence results in appearance of a small fluc-
tuation )1(

444 Λ+Λ→Λ ε  in (5). Therefore, it’s not difficult to 
obtain explicit expressions for nonzero components of ikT : 
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Using bulky formulae, we can find expressions for the 
linearized in ε  Ricci tensor components (this procedure is 
performed in more detail in [4]). Analysis of the obtained 
expressions along with non-diagonal Einstein equations is 
very helpful. It enables to reduce all field equations (8) to 
one equation and five conditions, presented below: 
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In our notation ξηΔ  is the Laplace operator on the in-

ternal sphere. Obviously, the introduction of )1(
4Λ  is justi-

fied, because only in the case 0)1(
4 ≠Λ  the internal mani-

fold is compact ( +∞<a ). Hence, making a change of the 
function 21 2 cA ϕ≡  we come to the Poisson equation for 
the gravitational potential of the particle: 
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=Δ+Δ , where 2~3 66 GG = ,     (11) 

which admits the following solution: 
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Here 00 ,ηξ  denote the position of the source on a two-
sphere and lmY  are Laplace’s spherical harmonics. It is 
evident that at large r3 the obtained potential should coin-
cide with the Newtonian one. From this boundary condi-
tion we easily get the following correlation: 

NGaGS ππ 4)4( 2
65 = , where GN is the Newtonian gravi-

tational constant. Therefore, the perturbation of the 00 
metric coefficient reads 
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22 cmGr Ng =   is the gravitational radius.           (13) 
All the rest of unknown metric coefficients expresses 

via 21 2 cA ϕ≡  from the conditions in (10). 
Now we have requisite to find the PPN-parameter γ . 

Obviously, the characteristic sizes of astrophysical ob-
jects, such as the Sun, are much larger than the compacti-
fication scale of the internal space ( aR >>3 ). Then for 
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33 Rr >>  we can limit ourselves to the zero mode in (13). 
Hence, at these distances the metrics (6) reads 
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It can be easily seen from (14) that the PPN-parameter 
31=γ . It’s worth to note that the case of the uniformly 

smeared particle over the two-sphere is a consequence 
from the obtained result, and there is no effect on γ . We 
see that the obtained result is in complete contradiction to 
the observational data, because to satisfy the experimental 
constraints this quantity should be very close to the unity. 
We also note that the relation ( )21 −= Dγ  is right (in the 
present case D=5). All these facts indicate the presence of 
significant physical flaw in the considered models. We 
suggested that the problem is that in both of these types of 

models (i.e. with toroidal and spherical compactification) 
the internal spaces are not stabilized. In [5] we show that 
our guess is correct and in the case of stabilized internal 
spaces considered models can be in agreement with ob-
servations. 
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