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ABSTRACT. We generalize the standard methods of 
quantum statistical physics and thermodynamics to the 
multidimensional case and apply them in order to derive 
different thermodynamic quantities, characterizing an 
ideal gas of non-relativistic particles. In particular, we 
obtain the formula for the pressure in the internal space. 

 
Introduction  
 
Present-day observable phenomena, such as dark en-

ergy and dark matter, represent the great challenge for 
modern cosmology, astrophysics and theoretical physics 
generally. Nowadays within the scope of standard models 
these phenomena have no satisfactory explanation. This 
critical situation stimulates the search of solutions of this 
very complicated and overwhelmingly important problem 
beyond all conventional models, for example, by introduc-
ing extra spatial dimensions (ESDs). This breathtaking 
generalization follows directly from modern theories of 
unification of all known fundamental interactions (such as 
superstring theory, supergravity and M-theory). Indeed, 
these theories have the most self-consistent formulation in 
multidimensional space-times with ESDs [1]. Obviously, 
it is extremely necessary to subject these and other non-
standard physical theories to a procedure of hard-edged 
screening concerning their compatibility with experimen-
tal data. 

In the well-known Kaluza-Klein models, based on two 
pioneering papers [2, 3] by Theodor Kaluza and Oskar 
Klein respectively, all ESDs are assumed to be fi-
nite/compact and microscopic. In the recent paper [4] it 
was explicitly shown that Kaluza-Klein models with tor-
oidal compactification of ESDs and a standard dust-like 
matter source of the gravitational field contradict experi-
mental data of astronomical observations. In these models 
formulas for the classical gravitational tests of any theory 
of gravity (such as the perihelion shift, the deflection of 
light, the time delay of radar echoes [5] and PPN parame-
ters [6, 7]) are incompatible with observations in the Solar 
System. 

The natural topical question arises, whether Kaluza-
Klein models with toroidal compactification survive, 
when introducing non-dust-like matter sources of the 
gravitational field with non-dust-like equations of state in 
the internal space. Such matter sources were considered in 
[8], where it was explicitly shown that among the exact 
“soliton” solutions of the vacuum Einstein equation in the 
5-dimensional space-time with a single compact ESD [9-
11], describing the static gravitational field of a finite 
spherically symmetric matter source at rest, there is only 
one solution, called “the black string”, satisfying all ob-
servational data with the same accuracy as the 
Schwarzschild solution in General Relativity. This fact 
represents the main advantage of this solution. All ordi-
nary non-relativistic particles must be identified exactly 
with the black strings. A single black string at rest is char-
acterized by the dust-like equation of state 00 =p  in the 
3-dimensional external space and the very specific, 
strange and even unlikely equation of state 21 ε−=p  in 
the 1-dimensional internal space, where 0p  and 1p  are 
the corresponding pressures and ε  is the rest energy den-
sity. Thus, the pressure 1p , sometimes called “tension”, is 
negative and relativistic. Unfortunately, both these cir-
cumstances have unclear physical origin, and the corre-
sponding burning issue remains open. This fact represents 
the main disadvantage of the black string. 

In this work we produce consistent multidimensional 
generalization of standard methods of quantum mechan-
ics, statistical physics and thermodynamics and apply it in 
order to derive different thermodynamic quantities, char-
acterizing an ideal gas of black strings. Firstly, we solve 
exactly the 4-dimensional Schrödinger equation for the 
wave function of a free particle and find its energy spec-
trum. Secondly, we generalize the standard Gibbs distribu-
tion to the case of the multidimensional space and obtain 
the partition function of the considered ideal gas. Thirdly, 
with the help of this function and the first law of thermo-
dynamics we arrive at the explicit expression for the pres-
sure in the internal space and investigate its asymptotical 
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behavior. This predictably positive and non-relativistic 
expression represents the usual temperature dependent 
contribution to the pressure. In conclusion we summarize 
our main results. 

 
Let us start with the stationary 4-dimensional 

Schrödinger equation 
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where 4Ĥ  and 3Ĥ  are 4- and 3-dimensional Hamilton 
operators respectively; 4ψ  is a wave function of a free 
non-relativistic particle (it depends on all spatial coordi-
nates ξ,,, zyx , but does not depend on time t ); the co-

ordinate ξ  corresponds to the ESD and 3Δ  is a 3-
dimensional Laplace operator. Let us note that subscripts 
4, 3 and 1 indicate everywhere that the corresponding 
quantity relates to the total 4-dimensional, the external 3-
dimensional or the internal 1-dimensional spaces respec-
tively. Following the variable separation method, we seek 
for the solution of the equation (1) in the form 
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where 3E  and 1E  represent the standard and the addi-
tional parts of the total energy 4E  respectively. Now our 
aim is to determine 1E . Imposing periodic boundary con-
ditions 
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where a  is the period of the torus (the size of the ESD), 
one can explicitly show that 
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Thus, we have arrived at the additional energy spec-
trum, which is necessary for the subsequent determination 
of the corresponding partition function 1Z . For 0=n  the 

wave function ( ) a101 =ψ  is constant. Therefore, we can 
draw an important side conclusion that in the ground state 
( 0=n , ( ) 001 =E ) the particle is uniformly smeared over 
the ESD. Thus, the assumption of the uniform smearing, 
actually made in [9-11], means that the matter source 
(namely, the black string) is considered in its ground state. 

For ... 3, ,2 ,1=n  the wave function ( )n1ψ  can be ex-
pressed in the form of the linear combination of two or-
thogonal functions 
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Both these functions (as well as ( )01ψ ) are real and sat-

isfy the normalization condition 1
0

2
1 =∫ ξψ d

a

. 

Now let us turn to the multidimensional Gibbs distribu-
tion. Proceeding from the fundamental principles of quan-
tum statistical physics, one can show that it preserves its 
standard form: 
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where νw  represents the probability of finding a system, 
closed in the thermostat, in the ν -th quantum state with 
the energy νε ; ν  denotes the full set of quantum num-
bers, unambiguously determining the considered quantum 
state; k  is the Boltzmann constant and T  is the tempera-
ture. Finally, Z  is the partition function. 

Now let us consider an ideal gas of N  identical non-
relativistic particles. Obviously, in view of (2) the parti-
tion function 4Z  of each of them can be expressed in the 
form of the product of two partition functions 3Z  and 1Z , 
corresponding to the external and the internal spaces re-
spectively: 134 ZZZ = . Substituting the discrete spectrum 
(4) into (6), we obtain 
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the theta-functions. 
In (7) we have also introduced a convenient quantity q  

and a characteristic temperature cT : 
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According to [12], the free energy 
ZkTTSUF ln−=−= , where U  is the internal energy 

and S  is the entropy, preserves its standard form, while 
the first law of thermodynamics now reads 
              daVpadVpdUTdS 3130 ++= ,           

daVpadVpSdTdF 3130 −−−= .                   (9) 
It follows from (9), in particular, that 
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For the considered ideal gas the existence of the ESD 
results in the additional (everywhere with respect to the 
standard 3-dimensional part) free energy 
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From (10) and (11) we obtain the following additional 
pressures: 
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where the prime denotes the derivative with respect to q . 
It is clear that 1p  is positive and non-relativistic. It has the 
following asymptotes: 
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The latter asymptote is predictable, since when the 
temperature is high enough, we can apply the classical 
approach instead of the quantum one. 

 
Conclusion 
 
 An ideal gas of ordinary non-relativistic particles has 

been described by the standard methods, generalized to 
the multidimensional case. In particular, the explicit ex-
pressions (11) and (12) for the additional free energy and 
pressures respectively have been derived. The pressure 1p  

in the internal space is positive and temperature depend-
ent. The relativistic, negative and temperature independent 
tension of each black string must be explained otherwise, 
for example, by the corresponding background matter 
perturbation. 

Our results can be generalized directly to the case of 
the multidimensional space-time with an arbitrary number 
of toroidal ESDs (see our forthcoming works). 
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