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ABSTRACT. We discuss the physics of clusters
of galaxies embedded in the cosmic dark energy
background and show that 1) the halo cut-off radius
of a cluster like the Virgo cluster is practically, if not
exactly, equal to the zero-gravity radius at which the
dark matter gravity is balanced by the dark energy
antigravity; 2) the halo averaged density is equal to
two densities of dark energy; 3) the halo edge (cut-off)
density is the dark energy density with a numerical
factor of the unity order slightly depending on the
halo profile.

1. Introduction

Dark energy treated as Λ-vacuum produces antigrav-
ity, and at the present cosmic epoch, the antigravity
is stronger than the gravity of matter for the global
universe considered as a whole. May the dynamical
effects of dark energy be strong on smaller scales as
well? Local dynamical effects of dark energy were first
recognized by Chernin et al. (2000); the studies of the
Local Group of galaxies and the expansion outflow of
dwarf galaxies around it revealed that the antigravity
may dominate over the gravity at distance of ≃ 1 − 3
Mpc from the barycenter of the group (Chernin, 2001,
2008; Baryshev et al., 2001; Karachentsev et al., 2003;
Byrd et al., 2007; Teerikorpi, 2008, 2010).

Further studies (Chernin et al., 2010) show that the
nearest rich cluster of galaxies, the Virgo cluster and
the Virgocentric expansion outflow around form a sys-
tem which is a scale-up version of the Local Group with
its expanding environment. It proves that the matter
gravity dominates in the volume of the cluster, while
the dark energy antigravity is stronger than the mat-
ter gravity in the Virgocentric outflow at the distances
of ≃ 10 − 30 Mpc from the cluster center. On both
scales of 1 and 10 Mpc, the key physical parameter
of the system is its ”zero-gravity radius” which is the
distance (from the system center) where the matter

gravity and the dark energy antigravity balance each
other exactly. The gravitationally bound system can
exist only within the sphere of this radius; outside the
sphere the flow dynamics is controlled mostly by the
dark energy antigravity.
The static solutions for polytropic configurations,

and their dynamic stability, in presence of the cosmo-
logical constant, have been investigated numerically
by Bisnovatyi-Kogan et al. (2011).

2. Dark energy on the cluster scale

Dark energy is a relativistic fluid and its description
is based on General Relativity. Nevertheless it may be
treated in terms of the Newtonian mechanics, if the
force field it produces is weak in the ordinary accepted
sense. The Newtonian treatment borrows from General
Relativity the major result: the effective gravitating
density of a uniform medium is given by the sum

ρeff = ρ+ 3p. (1)

With its equation of state pΛ = −ρΛ, dark energy has
the negative effective gravitating density:

ρΛeff = ρΛ + 3pΛ = −2ρΛ < 0. (2)

It is because of this negative value that dark energy
produces antigravity.
With this result, one may introduce ”Einstein’s law

of universal antigravity” which says that two bodies
imbedded in the dark energy background undergo re-
pulsion from each other with the force which is propor-
tional to the distance r between them:

FE(r) = −4πG

3
ρΛeffr

3/r2 = +
8πG

3
ρΛr. (3)

(This is the force for the unit mass of the body.) Let us
consider a spherical mass M of non-relativistic matter
embedded in the dark energy background. A test par-
ticle at the distance r from the mass center (and out of
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the mass) has the radial acceleration in the reference
frame related to the mass center:

F (r) = FN (r) + FE(r) = −G
M

r2
+

8πG

3
ρΛr. (4)

(Note that (4) comes directly from the Schwazcshild-de
Sitter spacetime in the weak field approximation (see,
for instance, Chernin et al., 2006); (4) may also be used
for the mass interior; in this case M = M(r) in (4), see
Bisnovatyi-Kogan et al., 2011).
It is seen from (4) that the total force F and the

acceleration are both zero at the distance

r = RΛ = [
M

8π
3 ρΛ

]1/3. (5)

HereRΛ is the zero-gravity radius (Chernin et al., 2000;
Chernin, 2001, 2008). The gravity dominates at dis-
tances r < RΛ, the antigravity is stronger than the
gravity at r > RΛ. It implies that the gravitationally
bound system with the mass M can exist only within
the zero-gravity sphere of the radius RΛ. Clusters of
galaxies are known as the largest gravitationally bound
systems. Thus, the zero-gravity radius is an absolute
upper limit for the radial size R of a static cluster:

R < RΛ = [
M

8π
3 ρΛ

]1/3. (6)

The total mass of the Virgo cluster estimated by
Karachentsev & Nasonova (2010) with the ”zero-
velocity” method is M = (6.3 ± 2.0) × 1014M⊙. This
result agrees well with the earlier virial mass of the
cluster Mvir = 6× 1014M⊙ estimated by Hoffman and
Salpeter (1980). Teerikorpi et al. (1992), Ekholm et
al. (1999, 2000) found that the real cluster mass M
might be from 1 to 2 the virial mass: M = (0.6 −
1.2) × 1015M⊙. Tully and Mohayaee (2004) obtained
the Virgo cluster mass M = 1.2× 1015M⊙. Taking for
an estimate the total mass of the Virgo cluster (dark
matter and baryons) M = (0.6 − 1.2) × 1015M⊙ and
the cosmological dark energy density ρΛ (see Sec.1),
one finds the zero-gravity radius of the Virgo cluster:

RΛ = (9− 11)Mpc ≃ 10 Mpc. (7)

3. Cluster overall parameters

The data of the Hubble diagram for the Virgo system
(Nasonova & Karachentsev, 2010) enable us to obtain
another approximate empirical equality:

[
RV 2

GM
]V irgo ≃ 1. (8)

This dimensionless combination of the overall physi-
cal parameters of the cluster resembles the traditional

virial relation. However its physical sense is different
from that of the virial theorem, which has a form for
the polytropic star with the polytropic index n

εg = −n

3
εg +

2n

3
εΛ,

see Bisnovatyi-Kogan et al. (2011).
The equation (8) does not assume any kind of equi-

librium state of the system; it does not assume either
any special relation between the kinetic and potential
energies of the system. It assumes only that the system
is embedded in the dark energy background and it is
gravitationally bound.
The data on the Local Group (Karachentsev et al.,

2009; Chernin et al., 2009) show in combination with
(8) that

[
RV 2

GM
]V irgo ≃ [

RV 2

GM
]LG ≃ 1. (9)

Here we use for the Local Group the following empirical
data: R ≃ 1 Mpc, M ≃ 1012M⊙, V ≃ 70 km/s which
give the radius, the total mass and the velocity disper-
sion in the Local Group, correspondingly (Karachent-
sev et al., 2009).
Assuming that the bound inner component (the clus-

ter) of the Virgo system has a zero-gravity radius RΛ

(6), we obtain from the empirical relation (9) that

V 2 ≃
(
8π

3

)1/3

GM2/3ρ
1/3
Λ . (10)

As we see, the velocity dispersion in the gravitationally
bound system depends only on its mass and the univer-
sal dark energy density. The relation (10) enables one
to estimate the matter mass of a cluster, if its velocity
dispersion is measured in observations:

M ≃ G−3/2[
8π

3
ρΛ]

−1/2V 3 ≃ 1015[
V

700km/s
]3M⊙.

(11)
On the other hand, the approximate empirical relation
(9) may serve as an estimator of the local dark energy
density, ρloc. Indeed, if the mass of a cluster and its ve-
locity dispersion are independently measured, one has:

ρloc ≃
3

8πG3
M−2V 6 ≃ ρΛ[

M

1015M⊙
]−2[

V

700km/s
]6,

(12)
what indicates that the observational data on the
Local System and the Virgo System provide strong
evidence in favor of the universal value of the dark
energy density which is the same on both global and
local scales.

4. Dark matter halos

Observations and computer simulations indicate –
in acceptable agreement with each other – that the
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spherically-averaged density profiles of the halos in var-
ious clusters are rather regular and reveal a simple de-
pendence on the radial distance. In the simplest case,
the halo density profile may be approximated by the
isothermal power law:

ρ = ρ1(
r1
r
)2, (13)

where ρ1, r1 are two constants; ρ1 = ρ(r1). It was
demonstrated (for Λ = 0) that the density profile of
(13) may exist in a system of particles moving along cir-
cular orbits (Bisnovatyi-Kogan & Zeldovich, 1969) and
in systems with almost radial orbits as well (Antonov
& Chernin, 1975).
According to the considerations of the section above,

the zero-gravity radius of a cluster like the Virgo cluster
is roughly (or maybe exactly) equal to the total radius
of the halo. If this is the case, we may identify r1 with
R = RΛ, and ρ1 is then the dark matter density at the
halo’s outer edge ρedge. With this, we find the total
mass of the halo:

M = 4π

∫ R

0

ρr2dr = 4πρedgeR
3
Λ. (14)

On the other hand, M = 8π
3 ρΛR

3
Λ; then (14) gives:

ρedge =
2

3
ρΛ. (15)

The cut-off density ρ1 = ρ(RΛ) proves to be a con-
stant value which does not depend on the total mass
or velocity dispersion of the isothermal halo; the den-
sity is just the universal dark energy density with the
order-of-unity numerical factor.
It follows from (14) that the mean halo density, <

ρ >, is given again by the dark energy density, but with
another numerical factor:

< ρ >= 3ρedge = 2ρΛ. (16)

The last relation is obviously valid for any halo’s
profile, not only for the isothermal one.

5. Conclusions

The antigravity produced by dark energy puts a
clear limit to the extension of dark matter halos in
clusters: the halo may exist only in the area r ≤ RΛ

where the antigravity is weaker than the gravity pro-
duced by non-vacuum matter of the cluster. The dark
energy density determines the mean matter density
of the halo and its edge (cut-off) density. These are
the three key physical parameters of clusters. More
details see in Bisnovatyi-Kogan & Chernin (2012).
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