
SCALAR COSMOLOGICAL PERTURBATIONS OF

PRESSURELESS MATTER IN THE BRANEWORLD MODEL

A. V. Viznyuk, Yu. V. Shtanov

Bogolyubov Institute for Theoretical Physics, Nat. Acad. Sci. of Ukraine,
Kiev, Ukraine, viznyuk@bitp.kiev.ua, shtanov@bitp.kiev.ua

ABSTRACT. We present a complete set of dif-
ferential equations describing the evolution of scalar
cosmological perturbations of pressureless matter on
the brane in the general case where the action of the
model contains the induced-curvature term as well
as the cosmological constants in the bulk and on the
brane.
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1. Introduction

The idea that our observable universe can be a
four-dimensional manifold (the “brane”) embedded
in higher dimensional spacetime (the “bulk”) with
Standard Model particles and fields trapped on the
brane was thoroughly investigated during the last two
decades. The activity in the field was triggered espe-
cially by the Randall–Sundrum (RS) braneworld model
(Randall & Sundrum, 1999), in which Einstein’s the-
ory of general relativity is modified due to extra dimen-
sional effects at relatively high energies. Apart from in-
teresting cosmological applications, it was shown that a
modified theory of gravity based on the RS braneworld
model potentially can explain the observations of the
galactic rotation curves and X-ray profiles of galactic
clusters without invoking the notion of dark matter
(see, for example, Mak & Harko, 2004). This theory,
however, was unable to address the cosmological im-
plications of dark matter. On the other hand, an al-
ternative braneworld model of Dvali, Gabadadze and
Porrati (DGP, Dvali et al., 2000), in which gravity is
modified at low energies, gave rise to a cosmology with
late-time acceleration without cosmological constants
on the brane or in the bulk.

The main feature of the DGP braneworld model is
the induced-gravity term in the action for the brane.
But cosmological constants are absent in this theory, in
contrast to the RS braneworld model. A more general
braneworld model contains the induced-gravity term as
well as cosmological constants in the bulk and on the
brane (Shtanov, 2000). Models of such generic form
can describe late-time cosmological acceleration and,

in doing so, they exhibit some interesting specific fea-
tures. At the same time, this kind of braneworld model
can be used to address astrophysical observations of
dark matter in galaxies (Viznyuk & Shtanov, 2007).
Developing the theory of cosmological perturbations

is a long-standing problem of the braneworld model.
Regardless the computational complexity of this prob-
lem, a considerable progress has been made during the
last years. A complete system of cosmological equa-
tions allowing for numerical computation was obtained
in the framework of the RS (Cardoso et al., 2007) and
DGP (Sawicki et al., 2007) braneworld models. Im-
portant analytical results are presented in Koyama &
Maartens, 2006. However, the problem of cosmological
perturbations in the braneworld model still remains to
be solved in full generality. For a modern review of this
problem, see Maartens & Koyama, 2010.
The existence of extra dimension requires specifi-

cation of the boundary conditions in the bulk space.
In the usual case of a spatially flat brane, the extra
dimension is noncompact, and one has to deal with
the spatial infinity of the extra dimension. This is a
difficult situation with no obvious and unique choice
for the boundary conditions. In the present work,
we consider the case of a spatially closed brane, an
expanding three-sphere, which is bounding a four-ball
in the bulk space. The boundary condition for such
configuration can be specified uniquely just as a
regularity condition of the metric inside the ball.

2. The theory

The braneworld action, to lowest order in the bulk
and brane curvature, can be written in the form:

S = M3

[∫
bulk

(R− 2Λ)− 2

∫
brane

K

]
+

∫
brane

(
m2R− 2λ

)
+

∫
brane

L (gµν , ϕ) , (1)

where R is the scalar curvature of the five-dimensional
bulk metric gAB, and R is the scalar curvature of the
induced metric gµν on the brane. The quantity K de-
notes the trace of the symmetric tensor of extrinsic cur-
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vature of the brane, and the symbol L(gµν , ϕ) denotes
the Lagrangian density of the four-dimensional matter
fields ϕ whose dynamics is restricted to the brane so
that they interact only with the induced metric gµν .
The symbols M and m denote the five-dimensional
and four-dimensional Planck masses, respectively, Λ is
the bulk cosmological constant, and λ is referred to as
brane tension.
Action (1) leads to the Einstein equation with cos-

mological constant in the bulk,

GAB + ΛgAB = 0 , (2)

and the following equation on the brane:

Gµν +
ΛRS

b+ 1
gµν =

(
b

b+ 1

)
1

m2
Tµν

+
1

b+ 1

(
1

M6
Qµν − Cµν

)
, (3)

where b = kℓ , k = λ/3M3 , ℓ = 2m2/M3 are con-
venient parameters of the braneworld model, ΛRS =
Λ/2+3k2 is the value of the effective cosmological con-
stant in the Randall–Sundrum model,

Qµν =
1

3
EEµν − EµλE

λ
ν +

1

2

(
EρλE

ρλ − 1

3
E2

)
gµν

(4)
is a quadratic expression with respect to the ‘bare’ Ein-
stein equation Eµν ≡ m2Gµν − Tµν on the brane, and
E = gρλEρλ. The symmetric traceless tensor Cµν is
the projection of the bulk Weyl tensor CABCD which
carries information about the gravitational field out-
side the brane.
The background cosmological evolution on the brane

can be presented in the following form (Sahni &
Shtanov, 2003):

H2 +
κ

a2
=

ρ+ λ

3m2
+

2

ℓ2

[
1±

√
1 + ℓ2

(
ρ+ λ

3m2
− Λ

6

)]
.

(5)
Here, ρ = ρ(t) is the matter energy density on the
brane. The Hubble parameter H ≡ ȧ/a describes the
evolution of the Friedmann–Robertson–Walker (FRW)
metric ds2 = −dt2 + a2(t)γijdx

idxj , κ = 0,±1 is a
spatial curvature of a purely spatial metric γij . Here
and hereafter, we neglect the influence of symmetryc
tensor Cµν for the background geometry.

3. Scalar cosmological perturbations on the
brane

Scalar cosmological perturbations of the induced
metric on the brane are most conveniently described
by the relativistic potentials Φ and Ψ in the so-called
longitudinal gauge. The perturbed metric in the con-
formal coordinates reads

ds2 = a2
[
−(1 + 2Φ)dη2 + (1− 2Ψ)γijdx

idxj
]
. (6)

We introduce the components of the linearly per-
turbed stress–energy tensor of matter in these coordi-
nates:

δTµ
ν =

 −δρ , −∇iv

a

∇iv

a
, δp δij +

ζij
a2

 , (7)

where δρ, δp, v, and ζij =
(
∇i∇j − 1

3γij∇
2
)
ζ are

scalar perturbations. Similarly, we introduce the scalar
perturbations δρC , vC , and δπC of the tensor Cµν :

m2δCµ
ν =

 −δρC , −∇ivC
a

∇ivC
a

,
δρC
3

δij +
δπi

j

a2

 , (8)

where δπij =
(
∇i∇j − 1

3γij∇
2
)
δπC .

We call v and vC the momentum potentials for mat-
ter and dark radiation, respectively, δρ and δρC are
their energy density perturbations, and ζ and δπC are
the scalar potentials for their anisotropic stresses.
Using this notation and equation (3), one can de-

rive a complete system for perturbations on the brane,
which, however, is not closed. To illustrate this prob-
lem, we present the result for pressureless1 matter
(p = 0, ζ = 0) :

∆̈ + 2H∆̇ =

(
1 +

6γ

β

)
ρ∆

2m2
+ (1 + 3γ)

δρC
m2β

, (9)

δρ̇C + 4HδρC =
1

a2
∇2vC , (10)

v̇C + 4HvC = γ∆C +

(
γ − 1

3

)
ρ∆

+
4

3(1 + 3γ)a2
(
∇2 + 3κ

)
δπC , (11)

where ∆ ≡ (δρ+ 3Hυ)/ρ is a conventional dimension-
less variable describing the matter perturbations, and,
similarly, ∆C ≡ δρC + 3HυC . The time-dependent di-
mensionless functions β and γ are given by

β ≡ ±2ℓ

√(
ρ+ λ

3m2
+

1

ℓ2
− Λ

6

)
, (12)

γ ≡ 1

3

1−
ρ

2m2(
ρ+ λ

3m2
+

1

ℓ2
− Λ

6

)
 . (13)

The system of equations (9)–(11) is not closed
because it does not contain an evolution equation
for the anisotropic stress δπC . The evolution of the
Weyl tensor should be derived from the perturbed

1The case of more general matter is considered in Viznyuk &
Shtanov, 2012.
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bulk equation (2) after setting some natural boundary
conditions in the bulk (Mukohyama, 2001).

4. Scalar perturbation of the bulk metric

To find the perturbed Weyl tensor, we consider
a spatially closed braneworld model (κ = 1) which
bounds the interior of flat (Λ = 0) bulk space with the
spatial topology of a ball and demand that the bulk
metric be regular in the brane interior. In the natural
static coordinates, the background bulk metric can be
written in this case in the form

ds2bulk = −dτ2 + dr2 + r2γijdx
idxj , (14)

where γij is the metric of a 3–dimensional maximally
symmetric space with coordinates xi. In these coor-
dinates, the FRW brane moves radially along the tra-
jectory r = a(τ) , and the relevant part of the bulk is
given by r ≤ a(τ).
The components of the perturbed bulk Weyl tensor

δCABCD and it’s projection to the brane δCµν can be
expressed in terms of the Mukohyama master variable
in the following way:

δρC
m2

= − n(n+ 2)(n2 + 2n− 3)

3a5
Ωb , (15)

vC
m2

=
(n2 + 2n− 3)

3a3

[
aH (∂rΩ)b −HΩb +

+
√
1 + a2H2 (∂τΩ)b

]
, (16)

δπC

m2
= −

(
1 + 2a2H2

)
2a

(
∂2
τΩ
)
b
−

−H
√
1 + a2H2

(
∂2
τrΩ

)
b
−
(
1 + 3a2H2

)
2a2

(∂rΩ)b−

−
(n2 + 2n− 3)

(
1 + 3a2H2

)
6a3

Ωb , (17)

where, a = a(t) is a scale factor of the background
Friedmann–Robertson–Walker metric on the brane,
H = ȧ/a is the Hubble parameter on the brane, and
the function τ = τ(t) is defined by the differential equa-
tion dτ/dt =

√
1 + a2H2. The subscript {}b means

that the value of the corresponding quantity is taken
at the brane. For example, Ωb(t) ≡ Ω[τ(t), a(t)]. In-
tegers n numerates the discrete Laplacian eigenvalues
on the three-sphere: k2n = n(n+ 2), n = 0, 1, 2 . . .
Mukohyama master variable Ω(τ, r) in

our case can be determined as a so-
lution of equation (Mukohyama, 2000):

−∂2
τΩ+ ∂2

rΩ− 3

r
∂rΩ− (n2 + 2n− 3)

r2
Ω = 0 , (18)

which can be solved in terms of special functions once
the regulatory conditions in the bulk are imposed.

5. Concluding remarks

The problem of finding closed system of equations,
describing the evolution of cosmological perturbations
in the general braneworld model with induced curva-
ture and cosmological constants, appears to be solved.
Basic equation in the bulk (18) complemented with
the boundary conditions on the brane (9–11), together
with (15–17), represent the desired result for pressure-
less matter.
Having this result in mind, one can act in two

possible ways: to develop numerical method for
computation similar to those employed in the analysis
of perturbations in the RS (Cardoso et al., 2007) and
DGP (Sawicki et al., 2007) braneworld models, or
to develop analytic approximate methods similar to
the quasi-static approximation (Koyama & Maartens,
2006). Both are the subject of further investigation.
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