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ABSTRACT. This paper describes a simplified 
numerical model of passive artificial Earth satellite (AES) 
motion. The model accuracy is determined using the 
International Laser Ranging Service (ILRS) high-
precision coordinates. Those data are freely available on 
http://ilrs.gsfc.nasa.gov. The differential equations of the 
AES motion are solved by the Everhart numerical method 
of 17th and 19th orders with the integration step automatic 
correction. The comparison between the AES coordinates 
computed with the motion model and the ILRS 
coordinates enabled to determine the accuracy of the 
ephemerides obtained. As a result, the discrepancy of the 
computed Etalon-1 ephemerides from the ILRS data is 
about 10” for a one-year ephemeris. 

 
Introduction 
 
The development of the space industry in Ukraine 

demands advancement of the artificial Earth satellite 
(AES) tracking networks. Such networks must provide the 
AES tracking and safety of their motion. That is a very 
important task as the AES cost is very high, and loss of a 
satellite already put into space threatens the country with 
not only heavy economic losses, but also with losses of 
international launch contracts. So far the satellite tracking 
can be performed in several observatories in Ukraine. The 
accuracy of the obtained observation data has been 
continuously increasing, and the methods and instruments 
of observation has been modified and retrofitted. To 
ensure safe AES operation, numerical motion models for 
passive object tracking are required as the space debris 
(SD) poses the greatest threat to satellites. 

This paper describes a simplified numerical motion 
model for the near-Earth space objects. The model is 
primarily focused on high speed of position computation 
for objects at altitude above 1,500 km. 

 
AES motion equations 
 
Equations of the near-Earth space object motion in the 

Earth-centred inertial coordinate system (Cartesian 
coordinate frame) take the following form: 

2

2 MS S
d r U a a
dt r

∂
p= + +

∂
.  (1) 

where r  – the object position vectors in the indicated 
coordinate frame;  – time. Summand t U

r
∂
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 on the right 

side of the equation is related to the accelerations caused 
by the Earth’s gravitational field; MSa  – the total 
perturbing acceleration by the Moon and the Sun; 

Spa  – 
the light pressure. 

 
Perturbations due to the Earth gravitational 

potential 
 
The geopotential value in the International Terrestrial 

Reference System (ITRS) is of the following form [1, pp. 
24-26]. 
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constant and the Earth’s equatorial radius; ( ); ;r x y z=  – 
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and sectorial harmonic expansion of the Earth’s 
gravitational potential. 

As partial derivatives U
r

∂
∂

are used in equation (1), the 

calculation of those partial derivatives of geopotential (2) 
presents the main complexity in practice. There are 
several commonly used recurrent algorithms for 
computation of geopotential derivatives, for instance, the 
algorithm suggested by L.Cunningham [3, pp. 71-74]. 
Simpler derivation of recurrence relations and also a 
method of smoothing work with imaginary values away 
were suggested in the algorithm by A. Drozyner and V. A. 
Brumberg [4]. The algorithm, developed by K. V. 
Kholshevnikov in 2005, offers an alternate approach to 
calculation of geopotential derivatives [6]. 

In this paper the method of direct calculation of 
geopotential partial derivatives in the Cartesian coordinate 
frame with regard to recurrent properties of the Legendre 
polynomials is used as an alternative method of 
computation the geopotential perturbations. Such method 
of perturbation computation showed computation speed 
comparable with the above-described methods, and it is 
quite intuitive and simple. 

To derive a working equation, it is necessary to 
accomplish a rather large amount of computations, but 
that eventually results in a single set of equations ready 
for being used in software algorithmization for any 
possible number of harmonics. If expansion in an arbitrary 
number of harmonics is used (1), a set of equations 
suitable for computation of geopotential partial derivatives 
can be obtained as a result of a series of manipulations: 
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Although those expressions are cumbersome, it is fairly 
easy to arrange calculation of their values. It is important 
to use recurrent expressions for the Legendre polynomials. 

Complete definition of instantaneous values  and 

 with regard to the inelastic Earth pole tide is 
performed as follows [7, pp. 57-69]: 
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where 
1

112 0,337 10dC
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−= − ⋅  year-1 and 

1
112 1,606 10dS
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−= ⋅  year-1 – derivatives, determined at 

epoch J2000. The standardised coefficients at epoch J2000 
are the following: 
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Tidal corrections to the harmonic coefficients of the 

geopotential expansion are computed using the following 
formula:  
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where  – nominal values of the Love number;  
– gravitational parameter of the Moon (  and the Sun 

nmk jGM
)2=j

( )3=j ; jr  – geocentric distance to the Moon or to the 

Sun; jΦ  – fixed geocentric latitude of the Moon or the 

Sun; jλ  – fixed West longitude (West of Greenwich) of 
the Moon or the Sun. 

 
Perturbations by the Moon and the Sun 
 
The next perturbations with the highest value, which 

affect the body motion in the near-Earth space, are those 
by the Moon and the Sun. Their perturbing accelerations 
were computed by formula (4): 
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M Sr r  – geocentric position vectors of the Moon and the 
Sun. When integrating equations of motion (1), the 
Moon’s and the Sun’s coordinates were computed using 
the DE405/LE405 model data [9]. 
 

Light pressure perturbations 
 
We assume that the rate of solar radiation flux is 

constant, and the satellite has a spherical shape. With such 
assumptions the force of direct sunlight pressure on the 
satellite can be expressed by formula [5, pp. 617-625]: 
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Srwhere  – geocentric position vector of the Sun; SΔ  – 

distance between the satellite and the Sun;  – 
astronomical unit (the average distance from the Earth to 
the Sun);  — parameter that describes the reflective 
properties of the satellite surface (with  — specular 
reflection, with 

Sa

k
1k =

1,44k =  — diffuse reflection), 
6

24,5605 10 Hq
м

−= ⋅  — the solar constant; s′ — the 

effective cross-sectional area of the satellite that is the 
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ratio between the cross-sectional area of the satellite and 
its mass. 

When computing perturbations caused by the light 
pressure, the central problem was to account for the effect 
of a satellite’s entering the Earth’s shadow. The model by 
Ferraz-Mello is applied in this paper [5, p. 622]. He 
suggested eliminating the problem by introducing the so-
called shadow function δ into the perturbing acceleration: 
with δ = 1, if the satellite is sunlit, δ = 0 - otherwise. In 
general, the shadow is cone-shaped, but it may be 
considered as cylindrical shaped due to far distance of the 
source casting the shadow.  

 
Determination of the ephemeris accuracy using the 

ILRS coordinates 
 
Integrating of the set of differential equations of the 

AES motion (1) was performed by the Everhart numerical 
method of 19th orders in the Cartesian coordinate frame 
with extended precision. The integration step partition 
coefficients were calculated independently to improve 
their accuracy [2]. The integrating is done using variable 
step [8]. 

To evaluate the model performance and accuracy, the 
ILRS (the International Laser ranging System 
http://ilrs.gsfc.nasa.gov) satellite Cartesian coordinate 
database is used. The coordinates are presented in the 
Earth-bound rotating reference frame (ITRF). More 
detailed information on the coordinate structure can be 
found in the file on the ILRS official website 
(http://ilrs.gsfc.nasa.gov/docs/cpf_1.01.pdf). The AES 
coordinate database is freely available via the ILRS open 
source FTP (ftp://cddis.gsfc.nasa.gov/pub/slr/ 

cpf_predicts). Using of those coordinates allows of control 
the satellite tracking accuracy. As those coordinates were 
obtained with high-precision numerical model for the AES 
motion, they can be used as reference to evaluate accuracy 
of other motion models, as well as to control the accuracy 
of the satellite observations collected [10]. To evaluate the 
model accuracy, we chose the following AES from the list 
of the satellites tracked by the ILRS: Etalon-1, Lageos-2 
and Ajisai. The main parameters and physical 
characteristics of those satellites, available on the ILRS 
official website, are presented in Table 1. 

Those are small-sized passive spherical in shape AES. 
As they move at different altitudes, the evaluation of the 
model with those satellites will enable to qualitatively 
assess the accuracy and amplitude of perturbations 
affecting AES. 

According to the description of the ILRS files of the 
AES coordinate database, each file contains the ITRF 
coordinates with constant time increment. The inference 
step for coordinates in a file depends on a satellite as such 
it can be from several minutes to tens of seconds. 
Residuals of computed positions were determined by the 
method of numerical integration of motion equations (1) 
from the model with reference to the ILRS coordinates. 
The satellite coordinates and velocity components for 
initial conditions were determined by the Lagrange 
interpolation method through 12 points. 

The differences between the coordinates obtained and 
those in the database can define quality of the developed 
motion model. The obtained absolute values of residuals 
(O-C) in altitude and computed angular geocentric 
residuals (O-C) at the end of the intervals of integration 
are given in Tables 2-4.  

 

Table 1. Orbital parameters of the selected AES 

 Diameter, 
m Mass, kg P, min i, 

degrees e Perigee, 
km 

Etalon-1 1.294 м 1415 676  64.9 0.00061 19120 
Lageos-2 0.6 м 405.38 223 52.64 0.0135 5620 
Ajisai (EGS) 2.15 м 685 116 50.0 0.001 1490 

Table 2. The (O-C) prediction dynamics for Etalon-1 

 6 months 9 months 12 months 
Δr [м] 1239 1776 2223 
Δα ["] -6.13  ± 2.99 -8.72  ± 3.66 -10.86  ± 3.65 
Δδ ["] -0.05  ± 7.76 -1.74  ± 11.08 +0.45  ± 13.85 

Table 3. The (O-C) prediction dynamics for Lageos-2 

 6 months 9 months 12 months 
Δr [м] 442 1064 2544 
Δα ["] -7.02  ± 1.18 -10.34  ± 4.36 -28.72  ± 8.33 
Δδ ["] +1.04  ± 2.48 -0.45  ± 14.16 +0.7  ± 31.12 

Table 4. The (O-C) prediction dynamics for Ajisai (EGS) 

 10 days 20 days 30 days 40 days 
Δr [м] 79 437 1065 2011 
Δα ["] -0.76  ± 1.13 -8.43  ± 2.55 -21.18  ± 4.81 -40.04  ± 8.31 
Δδ ["] +0.54  ± 1.71 +0.46  ± 7.62 -0.42  ± 17.84 -1.57  ± 33.52 
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The mean value of residual O-C in angles for an interval 
of integration is given in the first part of the above tables, 
and the largest biases from that mean value are presented in 
the tables’ second part. Thus, it can be seen that the mean 
value of residual and the bias values gradually increase with 
time. However, the residual values allow of pointing to the 
fact that the developed model enables to obtain retrieval 
ephemerides of a rather high quality online. Such accuracy 
in computation of the year ephemeris of the AES at altitude 
above that of Lageos-2 can be sufficient with the telescope 
filed of view of about 0.5º. 

 
Conclusions 
 
The results show that the prediction accuracy provided 

by suggested simplified numerical model of the AES 
motion is quite applicable to plot retrieval one-year 
ephemerides for satellites at altitude above 1,500 km. 

To improve the AES ephemeris accuracy in the motion 
model, it is necessary to account for weaker perturbations. 
At present, work is underway on modification of the 
motion model and accounting for the following 
perturbations:  
− atmospheric braking of the AES with orbit of altitude 

up to 1000 km; 
− usage of the Earth’s shadow model of more complex 

shape when computing perturbations due to the solar 
radiation pressure; 

− accounting for perturbations due to the ocean and 
atmospheric tidal bulges; 

− accounting for perturbations caused by other planets. 
The obtained simplified motion model with time 

intervals of several weeks can be used to search for close 
approaches of objects. But the model accuracy is not 

sufficient to do that for the AES with orbit altitude lower 
than that of Lageos-2. Therefore, the obtained numerical 
model can be used to search for approaches of the high-
orbit AES and geosynchronous objects only. As the 
geostationary region population has been increasing from 
year to year, provision of safety of motion of the satellites 
in operation demands a mechanism for online searching 
and tracking of space debris, as well as for predicting 
close approaches of objects. 

References 

Aksenov E.P. Theory of motion of artificial Earth 
satellites. Moscow: Nauka, 1977, 360 p. 

Bazey A.A., Kara I.V.: 2009, Herald of astronomical 
school, Kherson, p. 155-157. 

Bordovitsyna T.V., Avdyushev V.: 2007, Theory of 
motion of artificial Earth satellites, the Tomsk State 
University publishing house, p. 175. 

Brumberg V.A.. Analytical algorithms of celestial 
mechanics. Moscow: Nauka, 1980, 208 p. 

Reference Guide on Celestial Mechanics and 
Astrodynamics // ed. of G. N. Duboshin, Moscow: 
Nauka, 1971, 862 p. 

 Kholshevnikov K.V., Pitiev N.V., Titov V.B.: 2005, 
Attraction of celestial bodies, the St. Petersburg 
University publishing house, p. 104. 

IERS Conventions, 2003 – IERS Technical Note № 32 // 
U.S. Naval Observatory, 2004. 

Everhart E.: 1974, Celest. Mech., 10, p. 35-55. 
Standish E.M. JPL Planetary and Lunar Ephemerides, 

DE405/LE405. Jet Propulsion Laboratory, Interoffice 
Memorandum, IOM 312.F-98-048, August 26, 1998. 

Kara I.V.: 2010, Odessa Astron. Publ., 22, p. 20-24. 

 

Odessa Astronomical Publications, vol. 26/1 (2013) 69




