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ABSTRACT. Solutions to Einstein’s field equations,
for a static spherically symmetric perfect fluid model
with linear equation of state are found exactly. It
is shown that space of WD can be presented as
a space with deformed Heisenberg algebra so WD
observational data provide powerful tool in deformed
space research. Lane-Emden equation for isothermal
model is considered in details.

1. Introduction

We consider in this section the spacetime of non-
rotating white dwarf. Exact solutions of General Rel-
ativity are hard to come by. A great majority of those
known make assumption about symmetry of spacetime,
see, for instance, Delgaty & Lake (1998) and Stephani
et al. (2003). Only in a few cases, they are presented
as general solutions, depending on a few independent
continuous parameters such as mass, charge and an-
gular momentum. In general, the non-linearity of par-
tial differential equations of General Relativity makes
it difficult to find exact analytical solutions.
Due to the high symmetries of these objects, all

non-diagonal elements in the metric vanish, and, due
to the static requirements for the gravitational fields,
the metric elements are mere functions of the position
of a spherically symmetric shell. Static and spheri-
cally symmetric non-rotating stars therefore generate
a spacetime of the following form

ds2 = −c2 exp [2ν(r)] dt2 + exp [2λ(r)] dr2+

+ r2
(
dθ2 + sin2 θdφ2

)
(1)

the two functions ν(r)and λ(r) are uniquely given by
the massenergy distribution ρ(r) in the white dwarf.
As in the Newtonian stellar structure, we can define
the total mass inside the radius r

M(r) = 4π

∫ r

0

ρ(r′)r′2dr′ (2)

The properties of white dwarf can be obtained by solv-
ing the Einstein equations

Rab −
1

2
gabR =

8πG

c4
Tab (3)

where Rab and R are Ricci tensor and Ricci scalar
respectively. The energy-momentum tensor is given by

T a
b = diag

(
−ρc2, P, P, P

)
(4)

Equation (3) in the case of white dwarf takes the form

1

r2
− exp(−2λ)

(
1

r2
− 2λ′

r

)
=

8πG

c2
ρ (5)

1

r2
− exp(−2λ)

(
1

r2
+

2ν′

r

)
=

−8πG

c4
P (6)

Using the differential energy-momentum conserva-
tion law T i

j;i = 0 it is easy find out Tolman-
Oppenheimer-Volkoff equation

dP

dr
=

−GMρ

r2

(
1 +

P

ρ

)(
1 +

4πr3P

Mc2

)(
1− 2GM

c2r

)−1

(7)
Specifying the equation of state is the very first step to
find solutions to gravitational field equations for met-
rics (1). However, despite the growing number of ex-
act static spherically symmetric perfect fluid solutions,
most equations of state for known exact solutions have
no physical motivation. It seems like these are choosen
for specific purpose of simplifying the differential equa-
tions, and thereby allowing exact solutions to be found.
Nonetheless, simplest models considered in many pa-
pers are in accordance (in conformity) with much wider
class of models. The solution of the differential equa-
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tion (Hartle, 1978) for T = const is following

ρ =
T

2πG
(
1 + 6 T

c2 +
(
T
c2

)2) · 1

r2
(8)

M =
2T

G
(
1 + 6 T

c2 +
(
T
c2

)2) · r (9)

and solutions of equations (5) - (6) can be written in
the form

e−2λ = 1− 4T

c2
(
1 + 6 T

c2 +
(
T
c2

)2) (10)

ν = 2
T

c2
e2λ
(
1 +

T

c2

)
· 1(

1 + 6 T
c2 +

(
T
c2

)2) ·
· ln
( r
R

)
+ ν (R) (11)

The line element that describes 4-dimensional homo-
geneous and isotropic spacetime is given by

ds2 = −c2e2ν(R) ·
( r
R

)β́
dt2 + e2λdr2+

+ r2
(
dθ2 + sin2(θ)dφ2

)
(12)

β́ = 4
T

c2
e2λ ·

(
1 +

T

c2

)
· 1(

1 + 6 T
c2 +

(
T
c2

)2) (13)

Let introduce new variable z such that

z =
Reλ

1− β́
2

( r
R

)1− β́
2

(14)

Than line element of spacetime reads

ds2 = ζ2
( z
R

)2γ
·
(
−η2dt2 + dz2 +Kz2

(
dθ2 + sin2 θdφ2

))
(15)

where

2γ =
β́

1− β́
2

ζ2 =

[
(1− β́

2
)e−λ

]2γ
η2 = c2e2ν(R)

K =

(
1− β́

2

)2

e−2λ

The line element can be written in terms of flat metric

ds2 = ζ2
( z
R

)2γ
·
(
−η2dt2 + (1−K) dz2 +Kdσ2

)
(16)

where dσ2 is the time-independent metric of the
3-dimensional flat space: dσ2 = δijdz

idzj .

2. Deformed space of White Dwarf

A particle with mass m in space of white dwarf can
be described by Dirac-Born-Infeld Lagrangian:

L = −χ ·
( z
R

)γ√
1− K

η2
υ2 − (1−K)

η2
υ2z (17)

here and below a dot denotes the derivative with re-
spect to the time, ” ˙ ” ≡ d

dt and |υ| = dσ
dt , υz = (z,υ)

z =
ż. We use the notation χ = mcηζ. Hamiltonian can be
calculated using the usual Legendre transformations

H =
χ
(
z
R

)γ
1− K

η2υ2 − 1−K
η2 υ2z

(18)

and can be written in the canonical form

H =

√
χ2
( z
R

)2γ
+
η2

K
p2 +

(1−K) η2

K
p2z (19)

where Hamiltonian is expressed in terms of the mo-

menta p and pz = (z,p)
z . From expression (14) it can

be seen that in 1D space we have deformed commuta-
tion relation

[z, p] = iβ
( z
R

)−γ

(20)

where β = ~eλ
[(

1− β́
2

)
e−λ

]−γ

. A natural generaliza-

tion of (21) which preserves the rotational symmetry
is:

[zi, pj ] = iβ
( z
R

)−γ

δij (21)

In the position representation pi and zi act as operators

ẑiψ(z) = ziψ(z) (22)

p̂iψ(z) = −iβ
( z
R

)−γ ∂

∂zi
ψ(z) (23)

3. Coulomb-like problem in space with
deformed Heisenberg algebra

In this section we consider Hamiltonian with well-
known Coulomb-like potential U = −α

z in space of
White Dwarf. From the expression for the Hamilto-
nian and the representation for zi and pi we find out
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the following generalised form for the stationary state
Klein-Gordon equation:

E2ψ +
2Eα

z
ψ +

α2

z2
ψ = χ2

( z
R

)2γ
ψ−

η2

K
β2
( z
R

)−2γ 3∑
i=1

∂2

∂z2i
ψ+

η2β2γ

KR2

( z
R

)−2γ−2

(z,∇)ψ +
(1−K) η2

K

(z,∇)2

z2
ψ

(24)

Note that in the spherical variables operator (z,∇) act
as

(z,∇)ψ = 3z
∂

∂z
ψ+ tan(θ)

∂

∂θ
ψ− 2 cot(2φ)

∂

∂φ
ψ (25)

In order to find the explicit solution it is useful to in-
troduce, as usual, a new variable ξ in terms of which
equation (24) takes the form

− k5

(
1− k3

k5
ξ−2γ

)
∂2

∂ξ2
ψ+ (2k3 − k4)ξ

−2γ−1 ∂

∂ξ
ψ−

k5
ξ

∂

∂ξ
ψ +

k1
ξ
ψ +

k2
ξ2
ψ − χ2ξ2γψ + E2ψ = 0 (26)

where

k1 =
2Eα

R
k2 =

α2

R2
k3 =

η2β2

KR2
k4 =

3η2β2γ

KR2

k5 = 9(1−K)η2

KR2

4. White Dwarf with linear equation of state

As it can be seen from previous sections in general
equation of state can be written as

P = T (ρ0)ρ0 (27)

We consider in this section the simplest case with
constant temperature, so we have linear equation of
state.For the parametrization Γ = 1 we now introduce
dimensionless variables

ρ0 = ρce
θ r = aξ (28)

whit ρc = ρ0(0) as the central density and a

a =

√
T

4πGρc
(29)

The hydrostatic equilibrium therefore satisfies the fol-
lowing equation

1

ξ2
∂

∂ξ

(
ξ2θ′

)
= −eθ (30)

The mass of the white dwarf can be found as

M(ξ) =M0ξ
2 |θ′(ξ) | (31)

where M0 = 4π
(

T
4πG

) 3

2 1√
ρc
.

Conclusions

In this paper we described space of White Dwarf
via Lagrangian formalism and found expresions that
allow us to find hydrogen atom spectra. This paper
is not complicated beacuse of it is expected to find
graphical presentation for hydrogen spectra and
consider relativistic Lane-Emden equation, nonethelles
it can be helpful in understanding star evolution and
physics of compact objects.
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