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ABSTRACT. We discuss methods for modeling eclipsing 

binary stars. There are few realizations of the Wilson-
Devinney (1971) code and its improvements, e.g. “Binary 
Maker”, “Phoebe”. A parameter search using the Monte-
Carlo method was realized by Zola et al. (2010), which is 
efficient in expense of too many evaluations of the test func-
tion. We compare existing algorithms of minimization of 
multi-parametric functions. To study methods, we adopt a 
simplified model of an eclipsing binary at a circular orbit 
assuming spherical components with an uniform brightness 
distribution. This model resembles more advanced models in 
a sense of correlated parameter estimates due to a similar 
topology of the test function. Such a model may be applied to 
detached Algol-type systems, where the tidal distortion of 
components is negligible.   

Key words:  variable stars, eclipsing binaries, algols, data 
analysis, time series analysis, parameter determination. 

 
Introduction 
 

Determination of the model parameters of various as-
trophysical objects, comparison with observations and, if 
needed, further improvement of the model, is one of the 
main directions of science, particularly, of the study of 
variable stars. 

There is some software which allows to compute theo-
retical light curves of binary stars taking into account 
physical processes taking place there. Methods of model-
ing light curves of binary stars have been described by 
many authors (Kopal 1959, Tsessevich 1971, Shul’berg 
1971, Rucinski 2010, Kallrath and Milone 2009).  

Since the paper of Wilson and Devinney (1971) and its 
further improvements (Wilson 1979, 1994), there are 
some realizations of the corresponding method. The well 
known programs are “Binary Maker” (Bradstreet, 2005, 
http://www.binarymaker.com/), PHOEBE (Prsa et al. 
2011, http://sourceforge.net/projects/phoebe/). 

To determine the statistically best sets of the parame-
ters, there are some methods for optimization of the test 
function which is dependent on these parameters (cf. 
Cherepashchuk 1992). 

As for the majority of binary stars the observations are 
not sufficient to determine all parameters, for smoothing 
the light curves may be used “phenomenological fits”. 
Often were used trigonometric polynomials (=”restricted 
Fourier series”), following a pioneer work of Pickering 
(1881) and other authors, see Parenago and Kukarkin  
(1936) for a detailed historical review. Andronov (2012) 
proposed a method of phenomenological modeling of 
eclipsing variables (most effective for algols, but also ap-
plicable for EB and EW – type stars). 

 
Model 
 

The simplest model is based on the following main as-
sumptions: the stars are spherically symmetric (this is 
physically reliable for detached stars with components 
being deeply inside their Roche lobes); the surface bright-
ness distribution is uniform. This challenges the limb 
darkening law, but is often used for teaching students be-
cause of simplicity of the mathematical expressions, cf. 
Andronov (1991).  Similar simplified model of an eclips-
ing binary star is presented by Dan Bruton 
(http://www.physics.sfasu.edu/astro/ebstar/ebstar.html). 

The scheme is shown in Fig.1. The parameters are L1, 
L2 (proportional to luminosities), radii R1, R2, distance R 
between the projections of centers to the celestial sphere.  

 
Fig. 1. Scheme of eclipsing binary system with 
spherical components.   
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Fig. 2. A set of light curves generated for R1 in a 
range from 0.2 to 0.55 with a step of 0.05 for fixed 
values of other parameters listed in the text. 

 
 
The square of the eclipsed segment is S=S1+S2, 
S1=R1

2(α1-sin α1 cos α1)                               (1) 

S2=R2
2(α2-sin α2 cos α2) 

where the angles α1, α2 may be determined from the co-
sine theorem: 
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where obviously  The total flux is 
L=L1+L2, if R ≥ R1+R2 (i.e. both stars are visible, 
S=0). For R ≤ R1+R2, S=πR2

2 (assuming that R2≤R1). 
Generally, L = L1+L2 – S/πRj

2, where j is the number 
of star which is behind another, i.e. j=1, if cos2πφ ≤ 0, 
and j=2, if cos2πφ  ≥ 0. Here φ is phase (φ=0 corre-
sponds to a full eclipse, independently on which star has 
larger brightness). For scaling purposes, a dimensionless 
variable l(φ)=L(φ)/(L1+L2) is usually introduced.  
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For tests, we used a light curve generated for the fol-
lowing parameters: R1=0.3, R2=0.2, L1= 0.4, L2=0.6 
and i=80o. The phases were computed with a step of 
0.02.  This light curve as well as other generated for a set 
of values of R1 is shown in Fig.2. 

As a test function we have used: 
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where  (or li) are values of the signal at phases ix iφ  with 

a corresponding accuracy estimate iσ , and are theo-
retical values computed for a given trial set of m parame-
ters.  

cx

For normally distributed errors and absence of sys-
tematic differences between the observations and theoreti-
cal values, the parameter F is a random variable with a 

 statistical distribution (Anderson, 1958, Cherepash-
chuk 1992).  For the analysis carried out in this work, we 
used a simplified model with  

2
mn−χ

1=iσ . This assumption 
doesn’t challenge the basic properties of the test function. 

The scaling parameter is sometimes determined as 
x(0.75)/xc(0.75), i.e. at a phase where both components 
are visible, and the flux (intensity) has its theoretical 
maximum (in the “no spots” model). To improve statisti-
cal accuracy, it may be recommended to use a scaling 
parameter computed for all real observations: 
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       Even in our simplified model, the number of parame-
ters is still large (4). At Figure 3, the lines of equal levels 
of F are shown. One may see that the zones of small val-
ues are elongated and inclined showing a high correlation 
between estimates of 2 parameters. In fact this correlation 
is present for other pairs of parameters. This means that 
there may be relatively large regions in the multi–
parameter space which produce theoretical light curves of 
nearly equal coincidence with observations.  
 

 

Fig. 3. Lines of equal values of the test function F for 
fixed values of other parameters. The arrow shows posi-
tion of the “true” parameters used to generate the signal. 
  

Fig. 4. Best 100 points after 102, 103, 104, 105 trial compu-
tations, respectively. 

 
In the software by Zola et al. (2010), the Monte-Carlo 

method is used, and at each trial computation of the light 
curve, the random parameters are used in a corresponding 
range:  
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Ck = Ck,min + (Ck,min – Ck,min) . rand,  (5) 
where rand is an uniformly distributed random value. 

Then one may plot “parameter – parameter” diagrams 
for “best” points after a number of N trial computations. 
The “best” means sorting of sets of the parameters accord-
ing to the values of the test function F. 

Initially, the points are distributed uniformly. With an 
increasing N, “better” (with smaller F) point concentrate 
to a minimum. There may be some local minima, if the 
number of parameters will be larger (e.g. spot(s) present in 
the atmosphere(s) of component(s)). 

Andronov and Tkachenko (2013) had made computa-
tions for an artificial function of m (=1,2,3) variables. 
The minimal value δ (as a true value was set to zero), 
which was obtained using N trial computations in the 
Monte-Carlo method is statistically proportional to  

δ ~ N-2/m ,      (6) 

i.e. the number of computations N  ~ δ -m/2 drastically 
increases with both an increasing accuracy and number of 
parameters. 

For our simplified model, the numerical experiments sta-
tistically support this relation. Also, the distance between 
the “successful computations” (when the test function be-
comes smaller than all previous ones) ΔN~N. Obviously, it 
is not realistic to make computations of the test function for 
billions times to get a set of statistically optimal parameters.  

In the “brute force” method, the test functions are com-
puted using a grid in the m – dimensional space, so the 
interval of each parameter is divided by ni points. The 
number of computations is N=n1n2…nm should be still 
large. Either the Monte–Carlo method, or the “brute 
force” one allow to determine positions of the possible 
local extrema in an addition to the global one. 

However, if the preliminary position is determined, one 
should use faster methods to reach the minimum. Classi-
cally, there may be used the method of the “steepest de-
scent”, where the new set of parameters may be deter-
mined as 

,,,,1 ikikik hCC λ−=+     (7) 

where  is the estimated value of the coefficient  at 

k-th iteration,  – proposed vector of direction for the 

coefficient  , and λ is a parameter. Typically one may 
use one of the methods for one–dimensional minimization 
(cf. Press et al. 2007, Korn and Korn, 1968), determine a 
next set of the parameters , recompute a new vector 

and again minimize λ . In the method of the steepest 

descent, one may use a gradient  as a sim-
plest approximation to this vector. Another approach 
(Newton-Raphson) is to redefine a function F(λ)=F(Ci, 
i=1..m), compute the root of equation 

ikC , iC

ikh ,

iC

ikC ,

ikh ,

iik CFh ∂∂= /,

0/ =∂∂ λF , and 
then to use a parabolic approximation to this function. 
Thus 

     .     (8) )//()/( 22 λλλ ∂∂∂∂= FF

There may be some modifications of the method based on 
a decrease of λ, which may be recommended, if the shape 
of the function significantly differs from a parabola. 

In the method of “conjugated gradients”, the function is 
approximated by a second-order polynomial. Finally it is 
usually recommended to use the Marquardt (1963) algo-
rithm. We tested this algorithm with a combination of the 
“steepest descent” (when the determinant of the Hessian 
matrix is negative) and “conjugated gradients” (if posi-
tive), which both are efficient for a complex behavior of 
the test function. 

We developed the software realizing various methods 
for study of variable stars. The results of this study will be 
used in the frame of the projects "Ukrainian Virtual Ob-
servatory” (UkrVO) (Vavilova et al., 2012) and “Inter-
Longitude Astronomy’ (Andronov et al., 2010). 

 
References 

Anderson T.W.: 1958, An introduction to multivariate 
statistical analysis, New York. John Wiley & Sons,  

Andronov I.L.: 1991, Structure and Evolution of Stars, 
v.1, (in Russ.), Odessa Inst. of  Adv. Teachers, 84pp. 

Andronov I.L. et al.: 2010, Odessa Astron. Publ., 23, 8. 
Andronov I.L.: 2012, Astrophys., 55, 536. 
Andronov I.L., Tkachenko M.G.: 2013, Arxiv.org, 

2013arXiv1310.1967A 
Bradstreet D.H.: 2005, SASS,  24, 23. 
Cherepashchuk A.M: 1992, Astron. Zh., 70, 1157. 
Kallrath J., Milone E.F.: 2009, Eclipsing Binary Stars: 

Modeling and Analysis, Springer, 428pp. 
Kopal Z.: 1959, Close Binary Systems, J. Wiley and Sons, 

New York. 
Korn G.A., Korn Th.M.: 1968, Mathematical Handbook 

for Scientists and Engineers. - McGraw-Hill Book 
Company, N.Y. et al.  

Marquardt D.: 1963, SIAM J. Appl. Math. 11, 2. 
Parenago P.P., Kukarkin B.V.: 1936, Z. f. Astrophysik, 11, 

337. 
Pickering E.: 1881, Proc. Amer. Acad. Arts and Sciences 

16, 257. 
Press W.H., Teukolsky S.A., Vetterling W.T., Flannery 

B.P.: 2007, Numerical Recipes: The Art of Scientific 
Computing, Cambridge University Press. 

Prsa A., Matijevic G., Latkovic O., Vilardell F., Wils P.: 
2011, Astrophysics Source Code Library, record ascl: 
1106.002, 2011ascl.soft06002P 

Rucinski S.: 2010, AIP Conference Proceedings, 1314, 
29.  

Shul'berg A. M.: 1971, Close Binary Systems with Spheri-
cal Components, Moskva: Nauka, 246 pp., 
1971cbsw.book.....S  

Tsessevich V.P.: 1971, Eclipsing Variable Stars, Moscow, 
Nauka 

Vavilova I.B.: 2012, Kinem. Phys. Celest. Bodies, 28, 85,  
2012KPCB...28...85V 

Wilson R.E.: 1979, ApJ, 234, 1054. 
Wilson R.E.: 1994, PASP, 106, 921. 
Wilson R.E., Devinney E.J.: 1971, ApJ, 166, 605. 
Zola S., Gazeas K., Kreiner J.M. et al.: 2010, MNRAS, 

408, 464. 

206 Odessa Astronomical Publications, vol. 26/2 (2013)




